• Baggett, C., S. Lee, and S. Feldstein, 2016: An investigation of the presence of atmospheric rivers over the North Pacific during planetary-scale wave life cycles and their role in Arctic warming. J. Atmos. Sci., 73, 43294347, https://doi.org/10.1175/JAS-D-16-0033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. I. Hodges, S. Koumoutsaris, M. Zahn, and N. Keenlyside, 2011: The changing atmospheric water cycle in polar regions in a warmer climate. Tellus, 63A, 907920, https://doi.org/10.1111/j.1600-0870.2011.00534.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. I. Hodges, S. Koumoutsaris, M. Zahn, and P. Berrisford, 2013: The changing energy balance of the polar regions in a warmer climate. J. Climate, 26, 31123129, https://doi.org/10.1175/JCLI-D-12-00233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bintanja, R., and F. M. Selten, 2014: Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat. Nature, 509, 479482, https://doi.org/10.1038/nature13259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boisvert, L. N., and J. C. Stroeve, 2015: The Arctic is becoming warmer and wetter as revealed by the Atmospheric Infrared Sounder. Geophys. Res. Lett., 42, 44394446, https://doi.org/10.1002/2015GL063775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boisvert, L. N., T. Markus, and T. Vihma, 2013: Moisture flux changes and trends for the entire Arctic in 2003–2011 derived from EOS Aqua data. J. Geophys. Res. Oceans, 118, 58295843, https://doi.org/10.1002/jgrc.20414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boisvert, L. N., D. L. Wu, and C.-L. Shie, 2015: Increasing evaporation amounts seen in the Arctic between 2003 and 2013 from AIRS data. J. Geophys. Res. Oceans, 120, 68656881, https://doi.org/10.1002/2015JD023258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, Y., S. Liang, X. Chen, T. He, D. Wang, and X. Cheng, 2017: Enhanced wintertime greenhouse effect reinforcing Arctic amplification and initial sea-ice melting. Sci. Rep., 7, 8462, https://doi.org/10.1038/s41598-017-08545-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Copernicus Climate Change Service, 2017: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS), accessed 21 June 2019, https://doi.org/10.24381/cds.adbb2d47 and https://doi.org/10.24381/cds.bd0915c6.

    • Crossref
    • Export Citation
  • Dai, A., D. Luo, M. Song, and J. Liu, 2019: Arctic amplification is caused by sea-ice loss under increasing CO2. Nat. Commun., 10, 121, https://doi.org/10.1038/s41467-018-07954-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Devasthale, A., M. Tjernström, M. Caian, M. A. Thomas, B. H. Kahn, and E. J. Fetzer, 2012: Influence of the Arctic Oscillation on the vertical distribution of clouds as observed by the A-Train constellation of satellites. Atmos. Chem. Phys., 12, 10 53510 544, https://doi.org/10.5194/acp-12-10535-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., and Coauthors, 2017: Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice. Nat. Climate Change, 7, 289295, https://doi.org/10.1038/nclimate3241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dufour, A., O. Zolina, and S. K. Gulev, 2016: Atmospheric moisture transport to the Arctic: Assessment of reanalyses and analysis of transport components. J. Climate, 29, 50615081, https://doi.org/10.1175/JCLI-D-15-0559.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gimeno-Sotelo, L., R. Nieto, M. Vázquez, and L. Gimeno, 2018: A new pattern of the moisture transport for precipitation related to the drastic decline in Arctic sea ice extent. Earth Syst. Dyn., 9, 611625, https://doi.org/10.5194/esd-9-611-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, T., and D. Luo, 2017: Ural blocking as an amplifier of the Arctic sea ice decline in winter. J. Climate, 30, 26392654, https://doi.org/10.1175/JCLI-D-16-0548.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, T., S. Feldstein, and S. Lee, 2017: The role of downward infrared radiation in the recent Arctic winter warming trend. J. Climate, 30, 49374949, https://doi.org/10.1175/JCLI-D-16-0180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graham, R. M., and Coauthors, 2019: Evaluation of six atmospheric reanalyses over Arctic sea ice from winter to early summer. J. Climate, 32, 41214143, https://doi.org/10.1175/JCLI-D-18-0643.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., and M. Burtu, 2016: Arctic amplification enhanced by latent energy transport of atmospheric planetary waves. Quart. J. Roy. Meteor. Soc., 142, 20462054, https://doi.org/10.1002/qj.2802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hao, M., Y. Luo, Y. Lin, Z. Zhao, L. Wang, and J. Huang, 2019: Contribution of atmospheric moisture transport to winter Arctic warming. Int. J. Climatol., 39, 26972710, https://doi.org/10.1002/joc.5982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, Y.-T., D. M. W. Frierson, and J. E. Kay, 2011: Coupling between Arctic feedbacks and changes in poleward energy transport. Geophys. Res. Lett., 38, L17704, https://doi.org/10.1029/2011GL048546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2019: Special Report on the Ocean and Cryosphere in a Changing Climate. H.-O. Pörtner et al., Eds, IPCC, https://www.ipcc.ch/srocc/, in press.book

  • Kapsch, M.-L., R. G. Graversen, and M. Tjernström, 2013: Springtime atmospheric energy transport and the control of Arctic summer sea-ice extent. Nat. Climate Change, 3, 744748, https://doi.org/10.1038/nclimate1884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kapsch, M.-L., R. G. Graversen, M. Tjernström, and R. Bintanja, 2016: The effect of downwelling longwave and shortwave radiation on Arctic summer sea ice. J. Climate, 29, 11431159, https://doi.org/10.1175/JCLI-D-15-0238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kapsch, M.-L., N. Skific, R. G. Graversen, M. Tjernström, and J. A. Francis, 2018: Summers with low Arctic sea ice linked to persistence of spring atmospheric circulation patterns. Climate Dyn., 52, 24972512, https://doi.org/10.1007/s00382-018-4279-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and A. Gettelman, 2009: Cloud influence on and response to seasonal Arctic sea ice loss. J. Geophys. Res., 114, D18204, https://doi.org/10.1029/2009JD011773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Komatsu, K. K., V. A. Alexeev, I. A. Repina, and Y. Tachibana, 2018: Poleward upgliding Siberian atmospheric rivers over sea ice heat up Arctic upper air. Sci. Rep., 8, 2872, https://doi.org/10.1038/s41598-018-21159-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, H. J., M. O. Kwon, S.-W. Yeh, Y.-O. Kwon, W. Park, J.-H. Park, Y. H. Kim, and M. A. Alexander, 2017: Impact of poleward moisture transport from the North Pacific on the acceleration of sea ice loss in the Arctic since 2002. J. Climate, 30, 67576769, https://doi.org/10.1175/JCLI-D-16-0461.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. A. Barnes, 2015: Extreme moisture transport into the Arctic linked to Rossby wave breaking. J. Geophys. Res. Atmos., 120, 37743788, https://doi.org/10.1002/2014JD022796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, D., Y. Xiao, Y. Yao, A. Dai, I. Simmonds, and C. L. E. Franzke, 2016: Impact of Ural blocking on winter warm Arctic–cold Eurasian anomalies. Part I: Blocking-induced amplification. J. Climate, 29, 39253947, https://doi.org/10.1175/JCLI-D-15-0611.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maksimovich, E., and T. Vihma, 2012: The effect of surface heat fluxes on interannual variability in the spring onset of snow melt in the central Arctic Ocean. J. Geophys. Res., 117, C07012, https://doi.org/10.1029/2011JC007220.

    • Search Google Scholar
    • Export Citation
  • McGraw, M. C., and E. A. Barnes, 2020: New insights on subseasonal Arctic–midlatitude causal connections from a regularized regression model. J. Climate, 33, 213228, https://doi.org/10.1175/JCLI-D-19-0142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, A. L., J. E. Kay, H. Chepfer, R. Guzman, and V. Yettella, 2018: Isolating the liquid cloud response to recent Arctic sea ice variability using spaceborne lidar observations. J. Geophys. Res. Atmos., 123, 473490, https://doi.org/10.1002/2017JD027248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, A. L., J. E. Kay, W. R. Frey, H. Chepfer, and R. Guzman, 2019: Cloud response to Arctic sea ice loss and implications for future feedback in the CESM1 climate model. J. Geophys. Res. Atmos., 124, 10031020, https://doi.org/10.1029/2018JD029142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mortin, J., G. Svensson, R. G. Graversen, M.-L. Kapsch, J. C. Stroeve, and L. N. Boisvert, 2016: Melt onset over Arctic sea ice controlled by atmospheric moisture transport. Geophys. Res. Lett., 43, 66366642, https://doi.org/10.1002/2016GL069330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naakka, T., T. Nygård, T. Vihma, J. Sedlar, and R. G. Graversen, 2019: Atmospheric moisture transport between mid-latitudes and the Arctic: Regional, seasonal and vertical distributions. Int. J. Climatol., 39, 28622879, https://doi.org/10.1002/JOC.5988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nygård, T., R. G. Graversen, P. Uotila, T. Naakka, and T. Vihma, 2019: Strong dependence of wintertime Arctic moisture and cloud distributions on atmospheric large-scale circulation. J. Climate, 32, 87718790, https://doi.org/10.1175/JCLI-D-19-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, D.-S. R., S. Lee, and S. B. Feldstein, 2015: Attribution of the recent winter sea ice decline over the Atlantic sector of the Arctic Ocean. J. Climate, 28, 40274033, https://doi.org/10.1175/JCLI-D-15-0042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Persson, P. O. G., 2012: Onset and end of the summer melt season over sea ice: Thermal structure and surface energy perspective from SHEBA. Climate Dyn., 39, 13491371, https://doi.org/10.1007/s00382-011-1196-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Persson, P. O. G., M. D. Shupe, D. Perovich, and A. Solomon, 2017: Linking atmospheric synoptic transport, cloud phase, surface energy fluxes, and sea-ice growth: Observations of midwinter SHEBA conditions. Climate Dyn., 49, 13411364, https://doi.org/10.1007/s00382-016-3383-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pithan, F., and Coauthors, 2018: Role of air-mass transformations in exchange between the Arctic and mid-latitudes. Nat. Geosci., 11, 805812, https://doi.org/10.1038/s41561-018-0234-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rinke, A., and Coauthors, 2019: Trends of vertically integrated water vapor over the Arctic during 1979–2016: Consistent moistening all over? J. Climate, 32, 60976116, https://doi.org/10.1175/JCLI-D-19-0092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudeva, I., and I. Simmonds, 2015: Variability and trends of global atmospheric frontal activity and links with large-scale modes of variability. J. Climate, 28, 33113330, https://doi.org/10.1175/JCLI-D-14-00458.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 13341337, https://doi.org/10.1038/nature09051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, H. K. A., C. M. Bitz, A. Donohoe, and P. J. Rasch, 2017: A source–receptor perspective on the polar hydrologic cycle: Sources, seasonality, and Arctic–Antarctic Parity in the hydrologic cycle response to CO2 doubling. J. Climate, 30, 999910 017, https://doi.org/10.1175/JCLI-D-16-0917.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skific, N., and J. A. Francis, 2013: Drivers of projected change in Arctic moist static energy transport. J. Geophys. Res. Atmos., 118, 27482761, https://doi.org/10.1002/jgrd.50292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J., and D. Notz, 2018: Changing state of Arctic sea ice across all seasons. Environ. Res. Lett., 13, 103001, https://doi.org/10.1088/1748-9326/aade56.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, P. C., B. M. Hegyi, R. C. Boeke, and L. N. Boisvert, 2018: On the increasing importance of air–sea exchanges in a thawing Arctic: A review. Atmosphere, 9, 41, https://doi.org/10.3390/atmos9020041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vázquez, M., R. Nieto, A. Drumond, and L. Gimeno, 2016: Moisture transport into the Arctic: Source–receptor relationships and the roles of atmospheric circulation and evaporation. J. Geophys. Res. Atmos., 121, 13 49313 509, https://doi.org/10.1002/2016JD025400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vihma, T., J. Hartmann, and C. Lüpkes, 2003: A case study of an on-ice air flow over the Arctic marginal sea-ice zone. Bound.-Layer Meteor., 107, 189217, https://doi.org/10.1023/A:1021599601948.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vihma, T., and Coauthors, 2014: Advances in understanding and parameterization of small-scale physical processes in the marine Arctic climate system: A review. Atmos. Chem. Phys., 14, 94039450, https://doi.org/10.5194/acp-14-9403-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vihma, T., and Coauthors, 2016: The atmospheric role in the Arctic water cycle: A review on processes, past and future changes, and their impacts. J. Geophys. Res. Biogeosci., 121, 586620, https://doi.org/10.1002/2015JG003132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villamil-Otero, G. A., J. Zhang, J. He, and X. Zhang, 2018: Role of extratropical cyclones in the recently observed increase in poleward moisture transport into the Arctic Ocean. Adv. Atmos. Sci., 35, 8594, https://doi.org/10.1007/s00376-017-7116-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., R. M. Graham, K. Wang, S. Gerland, and M. A. Granskog, 2019: Comparison of ERA5 and ERA-Interim near-surface air temperature, snowfall and precipitation over Arctic sea ice: Effects on sea ice thermodynamics and evolution. Cryosphere, 13, 16611679, https://doi.org/10.5194/tc-13-1661-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woods, C., and R. Caballero, 2016: The role of moist intrusions in winter Arctic warming and sea ice decline. J. Climate, 29, 44734485, https://doi.org/10.1175/JCLI-D-15-0773.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woods, C., R. Caballero, and G. Svensson, 2013: Large-scale circulation associated with moisture intrusions into the Arctic during winter. Geophys. Res. Lett., 40, 47174721, https://doi.org/10.1002/grl.50912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, W., and G. Magnusdottir, 2017: Springtime extreme moisture transport into the Arctic and its impact on sea ice concentration. J. Geophys. Res. Atmos., 122, 53165329, https://doi.org/10.1002/2016JD026324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zahn, M., M. Akperov, A. Rinke, F. Feser, and I. I. Mokhov, 2018: Trends of cyclone characteristics in the Arctic and their patterns from different reanalysis data. J. Geophys. Res. Atmos., 123, 27372751, https://doi.org/10.1002/2017JD027439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., J. He, J. Zhang, I. Polyakov, R. Gerdes, J. Inoue, and P. Wu, 2013: Enhanced poleward moisture transport and amplified northern high-latitude wetting trend. Nat. Climate Change, 3, 4751, https://doi.org/10.1038/nclimate1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, L., L. Hua, and D. Luo, 2018: Local and external moisture sources for the Arctic warming over the Barents–Kara Seas. J. Climate, 31, 19631982, https://doi.org/10.1175/JCLI-D-17-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 120 120 88
Full Text Views 31 31 20
PDF Downloads 43 43 30

Horizontal Moisture Transport Dominates the Regional Moistening Patterns in the Arctic

View More View Less
  • 1 Finnish Meteorological Institute, Helsinki, Finland
© Get Permissions
Restricted access

Abstract

Along with the amplified warming and dramatic sea ice decline, the Arctic has experienced regionally and seasonally variable moistening of the atmosphere. Based on reanalysis data, this study demonstrates that the regional moistening patterns during the last four decades, 1979–2018, were predominantly shaped by the strong trends in horizontal moisture transport. Our results suggest that the trends in moisture transport were largely driven by changes in atmospheric circulation. Trends in evaporation in the Arctic had a smaller role in shaping the moistening patterns. Both horizontal moisture transport and local evaporation have been affected by the diminishing sea ice cover during the cold seasons from autumn to spring. Increases in evaporation have been restricted to the vicinity of the sea ice margin over a limited period during the local sea ice decline. For the first time we demonstrate that, after the sea ice has disappeared from a region, evaporation over the open sea has had negative trends due to the effect of horizontal moisture transport to suppress evaporation. Near the sea ice margin, the trends in moisture transport and evaporation and the cloud response to those have been circulation dependent. The future moisture and cloud distributions in the Arctic are expected to respond to changes in atmospheric pressure patterns; circulation and moisture transport will also control where and when efficient surface evaporation can occur.

Corresponding author: Tiina Nygård, tiina.nygard@fmi.fi

Abstract

Along with the amplified warming and dramatic sea ice decline, the Arctic has experienced regionally and seasonally variable moistening of the atmosphere. Based on reanalysis data, this study demonstrates that the regional moistening patterns during the last four decades, 1979–2018, were predominantly shaped by the strong trends in horizontal moisture transport. Our results suggest that the trends in moisture transport were largely driven by changes in atmospheric circulation. Trends in evaporation in the Arctic had a smaller role in shaping the moistening patterns. Both horizontal moisture transport and local evaporation have been affected by the diminishing sea ice cover during the cold seasons from autumn to spring. Increases in evaporation have been restricted to the vicinity of the sea ice margin over a limited period during the local sea ice decline. For the first time we demonstrate that, after the sea ice has disappeared from a region, evaporation over the open sea has had negative trends due to the effect of horizontal moisture transport to suppress evaporation. Near the sea ice margin, the trends in moisture transport and evaporation and the cloud response to those have been circulation dependent. The future moisture and cloud distributions in the Arctic are expected to respond to changes in atmospheric pressure patterns; circulation and moisture transport will also control where and when efficient surface evaporation can occur.

Corresponding author: Tiina Nygård, tiina.nygard@fmi.fi
Save