• Adhikari, S., E. R. Ivins, and E. Larour, 2016: ISSM-SESAW v1.0: Mesh-based computation of gravitationally consistent sea-level and geodetic signatures caused by cryosphere and climate driven mass change. Geosci. Model Dev., 9, 10871109, https://doi.org/10.5194/gmd-9-1087-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aparna, S. G., J. P. McCreary, D. Shankar, and P. N. Vinayachandran, 2012: Signatures of Indian Ocean dipole and El Niño–Southern Oscillation events in sea level variations in the Bay of Bengal. J. Geophys. Res., 117, C10012, https://doi.org/10.1029/2012JC008055.

    • Search Google Scholar
    • Export Citation
  • Armour, K. C., J. Marshall, J. R. Scott A. Donohoe, and E. R. Newsom, 2016: Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat. Geosci., 9, 549554, https://doi.org/10.1038/ngeo2731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bilbao, R. A., J. M. Gregory, and N. Bouttes, 2015: Analysis of the regional pattern of sea level change due to ocean dynamics and density change for 1993–2099 in observations and CMIP5 AOGCMs. Climate Dyn., 45, 26472666, https://doi.org/10.1007/s00382-015-2499-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bromirski, P. D., A. J. Miller, R. E. Flick, and G. Auad, 2011: Dynamical suppression of sea level rise along the Pacific coast of North America: Indications for imminent acceleration. J. Geophys. Res., 116, C07005, https://doi.org/10.1029/2010JC006759.

    • Search Google Scholar
    • Export Citation
  • Bronselaer, B., M. Winton, S. M. Griffies, W. J. Hurlin, K. B. Rodgers, O. V. Sergienko, R. J. Stouffer, and J. L. Russell, 2018: Change in future climate due to Antarctic meltwater. Nature, 564, 5358, https://doi.org/10.1038/s41586-018-0712-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calafat, F. M., D. P. Chambers, and M. N. Tsimplis, 2013: Inter-annual to decadal sea-level variability in the coastal zones of the Norwegian and Siberian seas: The role of atmospheric forcing. J. Geophys. Res. Oceans, 118, 12871301, https://doi.org/10.1002/jgrc.20106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carson, M., A. Köhl, D. Stammer, A. B. A. Slangen, C. A. Katsman, R. S. W. van de Wal, J. Church, and N. White, 2016: Coastal sea level changes, observed and projected during the 20th and 21st century. Climatic Change, 134, 269281, https://doi.org/10.1007/s10584-015-1520-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chambers, D. P., C. A. Mehlhaff, T. J. Urban, D. Fujii, and R. S. Nerem, 2002: Low-frequency variations in global mean sea level: 1950–2000. J. Geophys. Res., 107, 3026, https://doi.org/10.1029/2001JC001089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cummins, P. F., G. S. E. Lagerloef, and G. Mitchum, 2005: A regional index of northeast Pacific variability based on satellite altimeter data. Geophys. Res. Lett., 32, L17607, https://doi.org/10.1029/2005GL023642.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, J., A. Dai, and H. Xu, 2019: Nonlinear climate responses to increasing CO2 and anthropogenic aerosols simulated by CESM1. J. Climate, 33, 281301, https://doi.org/10.1175/JCLI-D-19-0195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., and Coauthors, 2020: Isolating the evolving contributions of anthropogenic aerosols and greenhouse gases: A new CESM1 large ensemble community resource. J. Climate, https://doi.org/10.1175/JCLI-D-20-0123.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dieng, H. B., A. Cazenave, B. Meyssignac, O. Henry, K. von Schuckmann, H. Palanisamy, and J. M. Lemoine, 2014: Effect of La Niña on the global mean sea level and North Pacific ocean mass over 2005–2011. J. Geod. Sci., 4, 1927, https://doi.org/10.2478/jogs-2014-0003.

    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., and R. S. Nerem, 2016: Interannual variability in global mean sea level estimated from the CESM large and last millennium ensembles. Water, 8, 491, https://doi.org/10.3390/w8110491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., and P. R. Gent, 2017: On the relationship between regional ocean heat content and sea surface height. J. Climate, 30, 91959211, https://doi.org/10.1175/JCLI-D-16-0920.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., and R. S. Nerem, 2018: Altimeter-era emergence of the patterns of forced sea-level rise in climate models and implications for the future. Proc. Natl. Acad. Sci. USA, 115, 12 94412 949, https://doi.org/10.1073/pnas.1813233115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A. C., and Coauthors, 2019: High climate sensitivity in the Community Earth System Model version 2 (CESM2). Geophys. Res. Lett., 46, 83298337, https://doi.org/10.1029/2019GL083978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., and K. Von Salzen, 2013: The role of reduced aerosol precursor emissions in driving near-term warming. Environ. Res. Lett., 8, 034008, https://doi.org/10.1088/1748-9326/8/3/034008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Granier, C., and Coauthors, 2011: Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period. Climatic Change, 109, 163190, https://doi.org/10.1007/s10584-011-0154-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and Coauthors, 2019: Concepts and terminology for sea level: Mean, variability and change, both local and global. Surv. Geophys., 40, 12511289, https://doi.org/10.1007/s10712-019-09525-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamlington, B. D., M. W. Strassburg, R. R. Leben, W. Han, R. S. Nerem, and K. Y. Kim, 2014: Uncovering an anthropogenic sea-level rise signal in the Pacific Ocean. Nat. Climate Change, 4, 782785, https://doi.org/10.1038/nclimate2307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamlington, B. D., S. H. Cheon, P. R. Thompson, M. A. Merrifield, R. S. Nerem, R. R. Leben, and K. Y. Kim, 2016: An ongoing shift in Pacific Ocean sea level. J. Geophys. Res. Oceans, 121, 50845097, https://doi.org/10.1002/2016JC011815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamlington, B. D., J. T. Fasullo, R. S. Nerem, K. Y. Kim, and F. W. Landerer, 2019: Uncovering the pattern of forced sea level rise in the satellite altimeter record. Geophys. Res. Lett., 46, 48444853, https://doi.org/10.1029/2018GL081386.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., and Coauthors, 2017: Spatial patterns of sea level variability associated with natural internal climate modes. Integrative Study of the Mean Sea Level and Its Components, OEAS Faculty Publications, 221–254, https://doi.org/10.1007/978-3-319-56490-6_10.

    • Crossref
    • Export Citation
  • Hauer, M. E., J. M. Evans, and D. R. Mishra, 2016: Millions projected to be at risk from sea-level rise in the continental United States. Nat. Climate Change, 6, 691695, https://doi.org/10.1038/nclimate2961.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., M. M. Holland, P. R. Gent, S. Ghan, J. E. Kay, P. J. Kushner, and W. H. Lipscomb, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, G. S., S. F. Tett, and P. A. Stott, 2003: Causes of atmospheric temperature change 1960–2000: A combined attribution analysis. Geophys. Res. Lett., 30, 1228, https://doi.org/10.1029/2002GL016377.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Josey, S. A., J. Hirschi, G. Sinha, A. Duchez, J. P. Grist, and M. Marsh, 2018: The recent Atlantic cold anomaly: Causes, consequences, and related phenomena. Annu. Rev. Mar. Sci., 10, 475501, https://doi.org/10.1146/annurev-marine-121916-063102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) Large Ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kenigson, J. S., W. Han, B. Rajagopalan, Yanto, and M. Jasinski, 2018: Decadal shift of NAO-linked interannual sea level variability along the U.S. northeast coast. J. Climate, 31, 49814989, https://doi.org/10.1175/JCLI-D-17-0403.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamarque, J.-F., and Coauthors, 2010: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmos. Chem. Phys., 10, 70177039, https://doi.org/10.5194/acp-10-7017-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamarque, J.-F., G. P. Kyle, M. Meinshausen, K. Riahi, S. J. Smith, D. P. van Vuuren, A. J. Conley, and F. Vitt, 2011: Global and regional evolution of short-lived radiatively-active gases and aerosols in the representative concentration pathways. Climatic Change, 109, 191212, https://doi.org/10.1007/s10584-011-0155-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2013: Climate change projections in CESM1 (CAM5) compared to CCSM4. J. Climate, 26, 62876308, https://doi.org/10.1175/JCLI-D-12-00572.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitrovica, J. X., N. Gomez, and P. U. Clark, 2009: The sea-level fingerprint of West Antarctic collapse. Science, 323, 753, https://doi.org/10.1126/science.1166510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moftakhari, H. R., A. AghaKouchak, B. F. Sanders, D. L. Feldman, W. Sweet, R. A. Matthew, and A. Luke, 2015: Increased nuisance flooding along the coasts of the United States due to sea level rise: Past and future. Geophys. Res. Lett., 42, 98469852, https://doi.org/10.1002/2015GL066072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nerem, R. S., D. P. Chambers, E. W. Leuliette, G. T. Mitchum, and B. S. Giese, 1999: Variations in global mean sea level associated with the 1997–1998 ENSO event: Implications for measuring long term sea level change. Geophys. Res. Lett., 26, 30053008, https://doi.org/10.1029/1999GL002311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nerem, R. S., B. D. Beckley, J. T. Fasullo, B. D. Hamlington, D. Masters, and G. T. Mitchum, 2018: Climate-change–driven accelerated sea-level rise detected in the altimeter era. Proc. Natl. Acad. Sci. USA, 115, 20222025, https://doi.org/10.1073/pnas.1717312115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neumann, B., A. T. Vafeidis, J. Zimmermann, and R. J. Nicholls, 2015: Future coastal population growth and exposure to sea-level rise and coastal flooding—A global assessment. PLOS ONE, 10, e0118571, https://doi.org/10.1371/journal.pone.0118571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, B. C., E. Kriegler, K. Riahi, K. L. Ebi, S. Hallegatte, T. R. Carter, R. Mathur, and D. P. van Vuuren, 2014: A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Climatic Change, 122, 387400, https://doi.org/10.1007/s10584-013-0905-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peyser, C. E., J. Yin, F. W. Landerer, and J. E. Cole, 2016: Pacific sea level rise patterns and global surface temperature variability. Geophys. Res. Lett., 43, 86628669, https://doi.org/10.1002/2016GL069401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Previdi, M., and L. M. Polvani, 2014: Climate system response to stratospheric ozone depletion and recovery. Quart. J. Roy. Meteor. Soc., 140, 24012419, https://doi.org/10.1002/qj.2330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogelj, J., S. Rao, D. L. McCollum, S. Pachauri, Z. Klimont, V. Krey, and K. Riahi, 2014: Air-pollution emission ranges consistent with the representative concentration pathways. Nat. Climate Change, 4, 446450, https://doi.org/10.1038/nclimate2178.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanderson, B. M., K. W. Oleson, W. G. Strand, F. Lehner, and B. C. O’Neill, 2018: A new ensemble of GCM simulations to assess avoided impacts in a climate mitigation scenario. Climatic Change, 146, 303318, https://doi.org/10.1007/s10584-015-1567-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sérazin, G., B. Meyssignac, T. Penduff, L. Terray, B. Barnier, and J.-M. Molines, 2016: Quantifying uncertainties on regional sea level change induced by multidecadal intrinsic oceanic variability. Geophys. Res. Lett., 43, 81518159, https://doi.org/10.1002/2016GL069273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R., and Coauthors, 2010: The Parallel Ocean Program (POP) reference manual: Ocean component of the Community Climate System Model (CCSM) and Community Earth System Model (CESM). Los Alamos National Laboratory Tech. Rep. LAUR-01853, 140 pp.

  • Storlazzi, C. D., and Coauthors, 2018: Most atolls will be uninhabitable by the mid-21st century because of sea-level rise exacerbating wave-driven flooding. Sci. Adv., 4, eaap9741, https://doi.org/10.1126/sciadv.aap9741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stott, P. A., N. P. Gillett, G. C. Hegerl, D. J. Karoly, D. A. Stone, X. Zhang, and F. Zwiers, 2010: Detection and attribution of climate change: A regional perspective. Wiley Interdiscip. Rev.: Climate Change, 1, 192211, https://doi.org/10.1002/WCC.34.

    • Search Google Scholar
    • Export Citation
  • Yeager, S. G., W. M. Kim, and J. Robson, 2016: What caused the Atlantic cold blob of 2015? US CLIVAR Variations, Vol. 14, No. 2, US CLIVAR Office, Washington, DC, 24–31, https://usclivar.org/newsletter/newsletters.

  • Yin, J., S. M. Griffies, and R. J. Stouffer, 2010: Spatial variability of sea level rise in twenty-first century projections. J. Climate, 23, 45854607, https://doi.org/10.1175/2010JCLI3533.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., and J. A. Church, 2012: Sea level trends, interannual and decadal variability in the Pacific Ocean. Geophys. Res. Lett., 39, L21701, https://doi.org/10.1029/2012GL053240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, A., D. S. Stevenson, and M. A. Bollasina, 2019: Climate forcing and response to greenhouse gases, aerosols, and ozone in CESM1. J. Geophys. Res. Atmos., 124, 13 87613 894, https://doi.org/10.1029/2019JD030769.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 38 38 19
Full Text Views 14 14 4
PDF Downloads 17 17 7

Sea Level Rise in the CESM Large Ensemble: The Role of Individual Climate Forcings and Consequences for the Coming Decades

View More View Less
  • 1 National Center for Atmospheric Research, and University of Colorado Boulder, Boulder, Colorado
  • 2 National Center for Atmospheric Research, Boulder, Colorado
  • 3 University of Colorado Boulder, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

The emergence of a spatial pattern in the externally forced response (FR) of dynamic sea level (DSL) during the altimeter era has recently been demonstrated using climate models but our understanding of its initial emergence, drivers, and implications for the future is poor. Here the anthropogenic forcings of the DSL pattern are explored using the Community Earth System Model Large Ensemble (CESM-LE) and Single-Forcing Large Ensemble, a newly available set of simulations where values of individual forcing agents remain fixed at 1920 levels, allowing for an estimation of their effects. Statistically significant contributions to the DSL FR are identified for greenhouse gases (GHGs) and industrial aerosols (AERs), with particularly strong contributions resulting from AERs in the mid-twentieth century and GHGs in the late twentieth and twenty-first century. Secondary, but important, contributions are identified for biomass burning aerosols in the equatorial Atlantic Ocean in the mid-twentieth century, and for stratospheric ozone in the Southern Ocean during the late twentieth century. Key to understanding regional DSL patterns are ocean heat content and salinity anomalies, which are driven by surface heat and freshwater fluxes, ocean dynamics, and the spatial structure of seawater thermal expansivity. Potential implications for the interpretation of DSL during the satellite era and the longer records from tide gauges are suggested as a topic for future research.

Corresponding author: J. Fasullo, fasullo@ucar.edu

Abstract

The emergence of a spatial pattern in the externally forced response (FR) of dynamic sea level (DSL) during the altimeter era has recently been demonstrated using climate models but our understanding of its initial emergence, drivers, and implications for the future is poor. Here the anthropogenic forcings of the DSL pattern are explored using the Community Earth System Model Large Ensemble (CESM-LE) and Single-Forcing Large Ensemble, a newly available set of simulations where values of individual forcing agents remain fixed at 1920 levels, allowing for an estimation of their effects. Statistically significant contributions to the DSL FR are identified for greenhouse gases (GHGs) and industrial aerosols (AERs), with particularly strong contributions resulting from AERs in the mid-twentieth century and GHGs in the late twentieth and twenty-first century. Secondary, but important, contributions are identified for biomass burning aerosols in the equatorial Atlantic Ocean in the mid-twentieth century, and for stratospheric ozone in the Southern Ocean during the late twentieth century. Key to understanding regional DSL patterns are ocean heat content and salinity anomalies, which are driven by surface heat and freshwater fluxes, ocean dynamics, and the spatial structure of seawater thermal expansivity. Potential implications for the interpretation of DSL during the satellite era and the longer records from tide gauges are suggested as a topic for future research.

Corresponding author: J. Fasullo, fasullo@ucar.edu
Save