• Ba, J., and Coauthors, 2014: A multi-model comparison of Atlantic multidecadal variability. Climate Dyn., 43, 23332348, https://doi.org/10.1007/s00382-014-2056-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baehr, J., H. Haak, S. Alderson, S. A. Cunningham, J. H. Jungclaus, and J. Marotzke, 2007: Timely detection of changes in the meridional overturning circulation at 26°N in the Atlantic. J. Climate, 20, 58275841, https://doi.org/10.1175/2007JCLI1686.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bingham, R. J., and C. W. Hughes, 2009: Signature of the Atlantic meridional overturning circulation in sea level along the east coast of North America. Geophys. Res. Lett., 36, L02603, https://doi.org/10.1029/2008GL036215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bingham, R. J., C. W. Hughes, V. Roussenov, and R. G. Williams, 2007: Meridional coherence of the North Atlantic meridional overturning circulation. Geophys. Res. Lett., 34, L23606, https://doi.org/10.1029/2007GL031731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boulton, C. A., L. C. Allison, and T. M. Lenton, 2014: Early warning signals of Atlantic meridional overturning circulation collapse in a fully coupled climate model. Nat. Commun., 5, 5752, https://doi.org/10.1038/ncomms6752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brennan, C. E., R. J. Matear, and K. Keller, 2008: Measuring oxygen concentrations to improve the detection capabilities of an ocean circulation observation array. J. Geophys. Res., 113, C02019, https://doi.org/10.1029/2007JC004113.

    • Search Google Scholar
    • Export Citation
  • Buckley, M. W., and J. Marshall, 2016: Observations, inferences, and mechanisms of the Atlantic meridional overturning circulation: A review. Rev. Geophys., 54, 563, https://doi.org/10.1002/2015rg000493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butler, E. D., K. I. C. Oliver, J. J.-M. Hirschi, and J. V. Mecking, 2016: Reconstructing global overturning from meridional density gradients. Climate Dyn., 46, 25932610, https://doi.org/10.1007/s00382-015-2719-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caesar, L., S. Rahmstorf, A. Robinson, G. Feulner, and V. Saba, 2018: Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature, 556, 191196, https://doi.org/10.1038/s41586-018-0006-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and Coauthors, 2016: North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part II: Inter-annual to decadal variability. Ocean Modell., 97, 6590, https://doi.org/10.1016/j.ocemod.2015.11.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Boer, A. M., A. Gnanadesikan, N. R. Edwards, and A. J. Watson, 2010: Meridional density gradients do not control the Atlantic overturning circulation. J. Phys. Oceanogr., 40, 368380, https://doi.org/10.1175/2009JPO4200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Vries, P., and S. L. Weber, 2005: The Atlantic freshwater budget as a diagnostic for the existence of a stable shut down of the meridional overturning circulation. Geophys. Res. Lett., 32, L09606, https://doi.org/10.1029/2004GL021450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drijfhout, S., S. L. Weber, and E. van der Swaluw, 2011: The stability of the MOC as diagnosed from model projections for pre-industrial, present and future climates. Climate Dyn., 37, 15751586, https://doi.org/10.1007/s00382-010-0930-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drijfhout, S., G. J. van Oldenborgh, and A. Cimatoribus, 2012: Is a decline of AMOC causing the warming hole above the North Atlantic in observed and modeled warming patterns? J. Climate, 25, 83738379, https://doi.org/10.1175/JCLI-D-12-00490.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, Q. Y., J. P. Viebahn, and H. A. Dijkstra, 2014: Deep ocean early warning signals of an Atlantic MOC collapse. Geophys. Res. Lett., 41, 60096015, https://doi.org/10.1002/2014GL061019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frajka-Williams, E., and Coauthors, 2019: Atlantic meridional overturning circulation: Observed transport and variability. Front. Mar. Sci., 6, 260, https://doi.org/10.3389/fmars.2019.00260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haarsma, R. J., F. M. Selten, and S. S. Drijfhout, 2015: Decelerating Atlantic meridional overturning circulation main cause of future west European summer atmospheric circulation changes. Environ. Res. Lett., 10, 094007, https://doi.org/10.1088/1748-9326/10/9/094007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haskins, R. K., K. I. C. Oliver, L. C. Jackson, R. A. Wood, and S. S. Drijfhout, 2019: Temperature domination of AMOC weakening due to freshwater hosing in two GCMs. Climate Dyn., 54, 273286, https://doi.org/10.1007/S00382-019-04998-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hermanson, L., R. Eade, N. H. Robinson, N. J. Dunstone, M. B. Andrews, J. R. Knight, A. A. Scaife, and D. M. Smith, 2014: Forecast cooling of the Atlantic subpolar gyre and associated impacts. Geophys. Res. Lett., 41, 51675174, https://doi.org/10.1002/2014GL060420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huisman, S. E., M. den Toom, H. A. Dijkstra, and S. Drijfhout, 2010: An indicator of the multiple equilibria regime of the Atlantic meridional overturning circulation. J. Phys. Oceanogr., 40, 551567, https://doi.org/10.1175/2009JPO4215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, L. C., and R. A. Wood, 2018a: Hysteresis and resilience of the AMOC in an eddy-permitting GCM. Geophys. Res. Lett., 45, 85478556, https://doi.org/10.1029/2018GL078104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, L. C., and R. A. Wood, 2018b: Timescales of AMOC decline in response to fresh water forcing. Climate Dyn., 51, 13331350, https://doi.org/10.1007/s00382-017-3957-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, L. C., R. Kahana, T. Graham, M. A. Ringer, T. Woollings, J. V. Mecking, and R. A. Wood, 2015: Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM. Climate Dyn., 45, 32993316, https://doi.org/10.1007/s00382-015-2540-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klus, A., M. Prange, V. Varma, and M. Schulz, 2019: Spatial analysis of early-warning signals for a North Atlantic climate transition in a coupled GCM. Climate Dyn., 97113, https://doi.org/10.1007/S00382-018-4567-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, J. R., C. K. Folland, and A. A. Scaife, 2006: Climate impacts of the Atlantic multidecadal oscillation. Geophys. Res. Lett., 33, L17706, https://doi.org/10.1029/2006GL026242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latif, M., and Coauthors, 2004: Reconstructing, monitoring, and predicting multidecadal-scale changes in the North Atlantic thermohaline circulation with sea surface temperature. J. Climate, 17, 16051614, https://doi.org/10.1175/1520-0442(2004)017%3C1605:RMAPMC%3E2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenton, T. M., 2011: Early warning of climate tipping points. Nat. Climate Change, 1, 201209, https://doi.org/10.1038/nclimate1143.

  • Lenton, T. M., V. N. Livina, V. Dakos, E. H. van Nes, and M. Scheffer, 2012: Early warning of climate tipping points from critical slowing down: Comparing methods to improve robustness. Philos. Trans. Roy. Soc., A370, 11851204, https://doi.org/10.1098/rsta.2011.0304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., and Coauthors, 2019: A sea change in our view of overturning in the subpolar North Atlantic. Science, 363, 516521, https://doi.org/10.1126/science.aau6592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madec, G., 2008: NEMO ocean engine. Note du Pole de modélisation Institut Pierre-Simon Laplace No. 27, 401 pp.

  • Mann, M. E., Z. Zhang, M. K. Hughes, R. S. Bradley, S. K. Miller, S. Rutherford, and F. Ni, 2008: Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc. Natl. Acad. Sci. USA, 105, 13 25213 257, https://doi.org/10.1073/pnas.0805721105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCarthy, G. D., I. D. Haigh, J. J.-M. Hirschi, J. P. Grist, and D. A. Smeed, 2015a: Ocean impact on decadal Atlantic climate variability revealed by sea-level observations. Nature, 521, 508510, https://doi.org/10.1038/nature14491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCarthy, G. D., and Coauthors, 2015b: Measuring the Atlantic meridional overturning circulation at 26°N. Prog. Oceanogr., 130, 91111, https://doi.org/10.1016/j.pocean.2014.10.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCarthy, G. D., P. J. Brown, C. N. Flagg, G. Goni, L. Houpert, and C. W. Hughes, 2020: Sustainable observations of the AMOC: Methodology and technology. Rev. Geophys., 58, e2019RG000654, https://doi.org/10.1029/2019RG000654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mecking, J. V., S. S. Drijfhout, L. C. Jackson, and T. Graham, 2016: Stable AMOC off state in an eddy-permitting coupled climate model. Climate Dyn., 47, 24552470, https://doi.org/10.1007/s00382-016-2975-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Megann, A., and Coauthors, 2014: GO5.0: The joint NERC–Met Office NEMO global ocean model for use in coupled and forced applications. Geosci. Model Dev., 7, 10691092, https://doi.org/10.5194/gmd-7-1069-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menary, M. B., D. L. R. Hodson, J. I. Robson, R. T. Sutton, R. A. Wood, and J. A. Hunt, 2015: Exploring the impact of CMIP5 model biases on the simulation of North Atlantic decadal variability. Geophys. Res. Lett., 42, 59265934, https://doi.org/10.1002/2015GL064360.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Msadek, R., K. W. Dixon, T. L. Delworth, and W. Hurlin, 2010: Assessing the predictability of the Atlantic meridional overturning circulation and associated fingerprints. Geophys. Res. Lett., 37, L19608, https://doi.org/10.1029/2010Gl044517.

    • Search Google Scholar
    • Export Citation
  • Nikolaou, A., P. A. Gutiérrez, A. Durán, I. Dicaire, F. Fernández-Navarro, and C. Hervás-Martínez, 2015: Detection of early warning signals in paleoclimate data using a genetic time series segmentation algorithm. Climate Dyn., 44, 19191933, https://doi.org/10.1007/s00382-014-2405-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ortega, P., J. Robson, R. T. Sutton, and M. B. Andrews, 2017: Mechanisms of decadal variability in the Labrador Sea and the wider North Atlantic in a high-resolution climate model. Climate Dyn., 49, 26252647, https://doi.org/10.1007/S00382-016-3467-Y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., J. E. Box, G. Feulner, M. E. Mann, A. Robinson, S. Rutherford, and E. J. Schaffernicht, 2015: Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Climate Change, 5, 475480, https://doi.org/10.1038/nclimate2554.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, C. D., and M. D. Palmer, 2012: Detectability of changes to the Atlantic meridional overturning circulation in the Hadley Centre climate models. Climate Dyn., 39, 25332546, https://doi.org/10.1007/s00382-012-1306-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, C. D., F. K. Garry, and L. C. Jackson, 2013a: A multimodel study of sea surface temperature and subsurface density fingerprints of the Atlantic meridional overturning circulation. J. Climate, 26, 91559174, https://doi.org/10.1175/JCLI-D-12-00762.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, C. D., and Coauthors, 2013b: Atmosphere drives recent interannual variability of the Atlantic meridional overturning circulation at 26.5°N. Geophys. Res. Lett., 40, 51645170, https://doi.org/10.1002/grl.50930.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robson, J., D. Hodson, E. Hawkins, and R. Sutton, 2013: Atlantic overturning in decline? Nat. Geosci., 7, 23, https://doi.org/10.1038/ngeo2050.

  • Robson, J., P. Ortega, and R. Sutton, 2016: A reversal of climatic trends in the North Atlantic since 2005. Nat. Geosci., 9, 513517, https://doi.org/10.1038/ngeo2727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sévellec, F., H. A. Dijkstra, S. S. Drijfhout, and A. Germe, 2018: Dynamical attribution of oceanic prediction uncertainty in the North Atlantic: Application to the design of optimal monitoring systems. Climate Dyn., 51, 15171535, https://doi.org/10.1007/s00382-017-3969-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thornalley, D. J. R., and Coauthors, 2018: Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years. Nature, 556, 227230, https://doi.org/10.1038/s41586-018-0007-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, R. B., J. M. Gregory, T. C. Johns, R. A. Wood, and J. F. B. Mitchell, 2001: Mechanisms determining the Atlantic thermohaline circulation response to greenhouse gas forcing in a non-flux-adjusted coupled climate model. J. Climate, 14, 31023116, https://doi.org/10.1175/1520-0442(2001)014<3102:MDTATC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vellinga, M., and R. A. Wood, 2004: Timely detection of anthropogenic change in the Atlantic meridional overturning circulation. Geophys. Res. Lett., 31, L14203, https://doi.org/10.1029/2004GL020306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1997: Resampling hypothesis tests for autocorrelated fields. J. Climate, 10, 6582, https://doi.org/10.1175/1520-0442(1997)010%3C0065:RHTFAF%3E2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, K. D., and Coauthors, 2015: The Met Office global coupled model 2.0 (GC2) configuration. Geosci. Model Dev. Discuss., 8, 521565, https://doi.org/10.5194/gmdd-8-521-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wills, R. C. J., K. C. Armour, D. S. Battisti, and D. L. Hartmann, 2019: Ocean–atmosphere dynamical coupling fundamental to the Atlantic multidecadal oscillation. J. Climate, 32, 251272, https://doi.org/10.1175/JCLI-D-18-0269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woollings, T., J. M. Gregory, J. G. Pinto, M. Reyers, and D. J. Brayshaw, 2012: Response of the North Atlantic storm track to climate change shaped by ocean–atmosphere coupling. Nat. Geosci., 5, 313317, https://doi.org/10.1038/ngeo1438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., E. P. Chassignet, and F. Wang, 2019: On the variability of the Atlantic meridional overturning circulation transports in coupled CMIP5 simulations. Climate Dyn., 52, 65116531, https://doi.org/10.1007/s00382-018-4529-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, X., R. Zhang, and T. R. Knutson, 2018: Underestimated AMOC variability and implications for AMV and predictability in CMIP models. Geophys. Res. Lett., 45, 43194328, https://doi.org/10.1029/2018GL077378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and R. Zhang, 2015: On the evolution of Atlantic meridional overturning circulation fingerprint and implications for decadal predictability in the North Atlantic. Geophys. Res. Lett., 42, 54195426, https://doi.org/10.1002/2015GL064596.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., and C. Wang, 2013: Multidecadal North Atlantic sea surface temperature and Atlantic meridional overturning circulation variability in CMIP5 historical simulations. J. Geophys. Res. Oceans, 118, 57725791, https://doi.org/10.1002/jgrc.20390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., 2008: Coherent surface-subsurface fingerprint of the Atlantic meridional overturning circulation. Geophys. Res. Lett., 35, L20705, https://doi.org/10.1029/2008GL035463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zou, S., M. S. Lozier, F. Li, R. Abernathey, and L. Jackson, 2020: Density-compensated overturning in the Labrador Sea. Nat. Geosci., 13, 121126, https://doi.org/10.1038/S41561-019-0517-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 129 129 89
Full Text Views 17 17 8
PDF Downloads 32 32 17

Fingerprints for Early Detection of Changes in the AMOC

View More View Less
  • 1 Hadley Centre, Met Office, Exeter, United Kingdom
© Get Permissions
Restricted access

Abstract

Different strategies have been proposed in previous studies for monitoring the Atlantic meridional overturning circulation (AMOC). As well as arrays to directly monitor the AMOC strength, various fingerprints have been suggested to represent an aspect of the AMOC based on properties such as temperature and density. The additional value of fingerprints potentially includes the ability to detect a change earlier than a change in the AMOC itself, the ability to extend a time series back into the past, and the ability to detect crossing a threshold. In this study we select metrics that have been proposed as fingerprints in previous studies and evaluate their ability to detect AMOC changes in a number of scenarios (internal variability, weakening from increased greenhouse gases, weakening from hosing and hysteresis) in the eddy-permitting coupled climate model HadGEM3-GC2. We find that the metrics that perform best are the temperature metrics based on large-scale differences, the large-scale meridional density gradient, and the vertical density difference in the Labrador Sea. The best metric for monitoring the AMOC depends somewhat on the processes driving the change. Hence the best strategy would be to consider multiple fingerprints to provide early detection of all likely AMOC changes.

Denotes content that is immediately available upon publication as open access.

Corresponding author: L. C. Jackson, laura.jackson@metoffice.gov.uk

Abstract

Different strategies have been proposed in previous studies for monitoring the Atlantic meridional overturning circulation (AMOC). As well as arrays to directly monitor the AMOC strength, various fingerprints have been suggested to represent an aspect of the AMOC based on properties such as temperature and density. The additional value of fingerprints potentially includes the ability to detect a change earlier than a change in the AMOC itself, the ability to extend a time series back into the past, and the ability to detect crossing a threshold. In this study we select metrics that have been proposed as fingerprints in previous studies and evaluate their ability to detect AMOC changes in a number of scenarios (internal variability, weakening from increased greenhouse gases, weakening from hosing and hysteresis) in the eddy-permitting coupled climate model HadGEM3-GC2. We find that the metrics that perform best are the temperature metrics based on large-scale differences, the large-scale meridional density gradient, and the vertical density difference in the Labrador Sea. The best metric for monitoring the AMOC depends somewhat on the processes driving the change. Hence the best strategy would be to consider multiple fingerprints to provide early detection of all likely AMOC changes.

Denotes content that is immediately available upon publication as open access.

Corresponding author: L. C. Jackson, laura.jackson@metoffice.gov.uk
Save