• Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 228232, https://doi.org/10.1038/nature01092.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and J. A. Screen, 2015: The impact of Arctic warming on the midlatitude jet-stream: Can it? Has it? Will it? Wiley Interdiscip. Rev.: Climate Change, 6, 277286, https://doi.org/10.1002/WCC.337.

    • Search Google Scholar
    • Export Citation
  • Bell, C. J., L. J. Gray, A. J. Charlton-Perez, M. M. Joshi, and A. A. Scaife, 2009: Stratospheric communication of El Niño teleconnections to European winter. J. Climate, 22, 40834096, https://doi.org/10.1175/2009JCLI2717.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawson, A., A. J. Matthews, and D. P. Stevens, 2011: Rossby wave dynamics of the North Pacific extra-tropical response to El Niño: Importance of the basic state in coupled GCMs. Climate Dyn., 37, 391405, https://doi.org/10.1007/s00382-010-0854-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawson, A., A. J. Matthews, D. P. Stevens, M. J. Roberts, and P. L. Vidale, 2013: Importance of oceanic resolution and mean state on the extra-tropical response to El Niño in a matrix of coupled models. Climate Dyn., 41, 14391452, https://doi.org/10.1007/s00382-012-1518-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deb, P., A. Orr, D. H. Bromwich, J. P. Nicolas, J. Turner, and J. S. Hosking, 2018: Summer drivers of atmospheric variability affecting ice shelf thinning in the Amundsen Sea Embayment, West Antarctica. Geophys. Res. Lett., 45, 41244133, https://doi.org/10.1029/2018GL077092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaz, H. F., M. P. Hoerling, and J. K. Eischeid, 2001: ENSO variability, teleconnections and climate change. Int. J. Climatol., 21, 18451862, https://doi.org/10.1002/joc.631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eade, R., D. Smith, A. Scaife, E. Wallace, N. Dunstone, L. Hermanson, and N. Robinson, 2014: Do seasonal-to-decadal climate predictions underestimate the predictability of the real world? Geophys. Res. Lett., 41, 56205628, https://doi.org/10.1002/2014GL061146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eichler T. P., and J. Gottschalck, 2013: Interannual variability of Northern Hemisphere storm tracks in coarse-gridded datasets. Adv. Meteor., 2013, 545463, https://doi.org/10.1155/2013/545463.

    • Search Google Scholar
    • Export Citation
  • Harvey, B. J., L. C. Shaffrey, and T. J. Woollings, 2014: Equator-to-pole temperature differences and the extra-tropical storm track responses of the CMIP5 climate models. Climate Dyn., 43, 11711182, https://doi.org/10.1007/s00382-013-1883-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., R. Sausen, E. Maier-Reimer, and R. Voss, 1993: On the cold start problem in transient simulations with coupled atmosphere-ocean models. Climate Dyn., 9, 5361, https://doi.org/10.1007/BF00210008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson, S. A., E. D. Maloney, and E. A. Barnes, 2016: The influence of the Madden-Julian oscillation on Northern Hemisphere winter blocking. J. Climate, 29, 45974616, https://doi.org/10.1175/JCLI-D-15-0502.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson, S. A., E. D. Maloney, and S. Son, 2017: Madden–Julian oscillation Pacific teleconnections: The impact of the basic state and MJO representation in general circulation models. J. Climate, 30, 45674587, https://doi.org/10.1175/JCLI-D-16-0789.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal orographic forcing. J. Atmos. Sci., 38, 11791196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671, https://doi.org/10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and E. J. Nelkin, 2010: The TRMM Multi-satellite Precipitation Analysis (TMPA). Satellite Rainfall Applications for Surface Hydrology, F. Hossain and M. Gebremichael, Eds., Springer Verlag, 3–22.

    • Crossref
    • Export Citation
  • Jin, F., and B. J. Hoskins, 1995: The direct response to tropical heating in a baroclinic atmosphere. J. Atmos. Sci., 52, 307319, https://doi.org/10.1175/1520-0469(1995)052<0307:TDRTTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kent, C., R. Chadwick, and D. P. Rowell, 2015: Understanding uncertainties in future projections of seasonal tropical precipitation. J. Climate, 28, 43904413, https://doi.org/10.1175/JCLI-D-14-00613.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., F. W. Zwiers, and X. Zhang, 2013: Changes in temperature and precipitation extremes in the CMIP5 ensemble. Climatic Change, 119, 345357, https://doi.org/10.1007/s10584-013-0705-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutti, R., and J. Sedláček, 2013: Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Climate Change, 3, 369373, https://doi.org/10.1038/nclimate1716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutti, R., J. Rogelj, J. Sedláček, and E. M. Fischer, 2016: A scientific critique of the two-degree climate change target. Nat. Geosci., 9, 1318, https://doi.org/10.1038/ngeo2595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kostov, Y., J. Marshall, U. Hausmann, K. C. Armour, D. Ferreira, and M. M. Holland, 2017: Fast and slow responses of Southern Ocean sea surface temperature to SAM in coupled climate models. Climate Dyn., 48, 15951609, https://doi.org/10.1007/s00382-016-3162-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., E. P. Gerber, D. M. Holland, and C. Yoo, 2015: A Rossby wave bridge from the tropical Atlantic to West Antarctica. J. Climate, 28, 22562273, https://doi.org/10.1175/JCLI-D-14-00450.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, H., G. Brunet, and J. Derome, 2009: An observed connection between the North Atlantic Oscillation and the Madden–Julian oscillation. J. Climate, 22, 364380, https://doi.org/10.1175/2008JCLI2515.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J. P., X. J. Yuan, D. G. Martinson, and D. Rind, 2004: Re-evaluating Antarctic sea-ice variability and its teleconnections in a GISS global climate model with improved sea ice and ocean processes. Int. J. Climatol., 24, 841852, https://doi.org/10.1002/joc.1040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., B. J. Hoskins, and M. Masutani, 2004: The global response to tropical heating in the Madden–Julian oscillation during northern winter. Quart. J. Roy. Meteor. Soc., 130, 19912011, https://doi.org/10.1256/qj.02.123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oueslati, B., S. Bony, C. Risi, and J.-L. Dufresne, 2016: Interpreting the inter-model spread in regional precipitation projections in the tropics: Role of surface evaporation and cloud radiative effects. Climate Dyn., 47, 28012815, https://doi.org/10.1007/s00382-016-2998-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and Coauthors, 2017: Tropical rainfall, Rossby waves and regional winter climate predictions. Quart. J. Roy. Meteor. Soc., 143, 111, https://doi.org/10.1002/qj.2910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, and G. A. Vecchi, 2010: Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Climate, 23, 46514668, https://doi.org/10.1175/2010JCLI3655.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., M. Cane, N. Henderson, D.-E. Lee, R. Abernathey, and H. Zhang, 2019: Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nat. Climate Change, 9, 517522, https://doi.org/10.1038/s41558-019-0505-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaman, J., and E. Tziperman, 2005: The effect of ENSO on Tibetan Plateau snow depth: A stationary wave teleconnection mechanism and implications for the South Asian monsoons. J. Climate, 18, 20672079, https://doi.org/10.1175/JCLI3391.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., 2014: Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci., 7, 703708, https://doi.org/10.1038/ngeo2253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straus, D. M., and J. Shukla, 2002: Does ENSO force the PNA? J. Climate, 15, 23402358, https://doi.org/10.1175/1520-0442(2002)015<2340:DEFTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., and P. D. Sardeshmukh, 1993: Factors determining the extratropical response to equatorial diabatic heating anomalies. J. Atmos. Sci., 50, 907918, https://doi.org/10.1175/1520-0469(1993)050<0907:FDTERT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toniazzo, T., and A. A. Scaife, 2006: The influence of ENSO on winter North Atlantic climate. Geophys. Res. Lett., 33, L24704, https://doi.org/10.1029/2006GL027881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., P. Zurita-Gotor, C. Cairns, and J. Kidston, 2015: Response of the large-scale structure of the atmosphere to global warming. Quart. J. Roy. Meteor. Soc., 141, 14791501, https://doi.org/10.1002/qj.2456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S., C. Deser, G. A. Vecchi, J. Ma, H. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986, https://doi.org/10.1175/2009JCLI3329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zappa, G., L. C. Shaffrey, and K. I. Hodges, 2013: The ability of CMIP5 models to simulate North Atlantic extratropical cyclones. J. Climate, 26, 53795396, https://doi.org/10.1175/JCLI-D-12-00501.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 36 36 8
Full Text Views 4 4 1
PDF Downloads 8 8 2

The Extratropical Linear Step Response to Tropical Precipitation Anomalies and Its Use in Constraining Projected Circulation Changes under Climate Warming

View More View Less
  • 1 Centre for Oceans, Rivers, Atmosphere and Land Science, Indian Institute of Technology Kharagpur, Kharagpur, India, and Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
  • 2 Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences and School of Mathematics, University of East Anglia, Norwich, United Kingdom
  • 3 Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
© Get Permissions
Restricted access

Abstract

Rossby wave trains triggered by tropical convection strongly affect the atmospheric circulation in the extratropics. Using daily gridded observational and reanalysis data, we demonstrate that a technique based on linear response theory effectively captures the linear response in 250-hPa geopotential height anomalies in the Northern Hemisphere using examples of steplike changes in precipitation over selected tropical areas during boreal winter. Application of this method to six models from phase 5 of the Coupled Model Intercomparison Project (CMIP5), using the same tropical forcing, reveals a large intermodel spread in the linear response associated with intermodel differences in Rossby waveguide structure. The technique is then applied to a projected tropicswide precipitation change in the HadGEM2-ES model during 2025–45 December–February, a period corresponding to a 2°C rise in the mean global temperature under the RCP8.5 scenario. The response is found to depend on whether the mean state underlying the technique is calculated using observations, the present-day simulation, or the future projection; indeed, the bias in extratropical response to tropical precipitation because of errors in the basic state is much larger than the projected change in extratropical circulation itself. We therefore propose the linear step response method as a semiempirical method of making near-term future projections of the extratropical circulation, which should assist in quantifying uncertainty in such projections.

Corresponding author: Pranab Deb, pranab@coral.iitkgp.ac.in

Abstract

Rossby wave trains triggered by tropical convection strongly affect the atmospheric circulation in the extratropics. Using daily gridded observational and reanalysis data, we demonstrate that a technique based on linear response theory effectively captures the linear response in 250-hPa geopotential height anomalies in the Northern Hemisphere using examples of steplike changes in precipitation over selected tropical areas during boreal winter. Application of this method to six models from phase 5 of the Coupled Model Intercomparison Project (CMIP5), using the same tropical forcing, reveals a large intermodel spread in the linear response associated with intermodel differences in Rossby waveguide structure. The technique is then applied to a projected tropicswide precipitation change in the HadGEM2-ES model during 2025–45 December–February, a period corresponding to a 2°C rise in the mean global temperature under the RCP8.5 scenario. The response is found to depend on whether the mean state underlying the technique is calculated using observations, the present-day simulation, or the future projection; indeed, the bias in extratropical response to tropical precipitation because of errors in the basic state is much larger than the projected change in extratropical circulation itself. We therefore propose the linear step response method as a semiempirical method of making near-term future projections of the extratropical circulation, which should assist in quantifying uncertainty in such projections.

Corresponding author: Pranab Deb, pranab@coral.iitkgp.ac.in
Save