• Ban, N., J. Schmidli, and C. Schär, 2015: Heavy precipitation in a changing climate: Does short-term summer precipitation increase faster? Geophys. Res. Lett., 42, 11651172, https://doi.org/10.1002/2014GL062588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boers, N., B. Goswami, A. Rheinwalt, B. Bookhagen, B. Hoskins, and J. Kurths, 2019: Complex networks reveal global pattern of extreme-rainfall teleconnections. Nature, 566, 373377, https://doi.org/10.1038/s41586-018-0872-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bolvin, D. T., R. F. Adler, G. J. Huffman, E. J. Nelkin, and J. P. Poutiainen, 2009: Comparison of GPCP monthly and daily precipitation estimates with high-latitude gauge observations. J. Appl. Meteor. Climatol., 48, 18431857, https://doi.org/10.1175/2009JAMC2147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carmichael, M. J., R. D. Pancost, and D. J. Lunt, 2018: Changes in the occurrence of extreme precipitation events at the Paleocene–Eocene thermal maximum. Earth Planet. Sci. Lett., 501, 2436, https://doi.org/10.1016/j.epsl.2018.08.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, D., and A. Dai, 2018: Dependence of estimated precipitation frequency and intensity on data resolution. Climate Dyn., 50, 36253647, https://doi.org/10.1007/s00382-017-3830-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, D., and A. Dai, 2019: Precipitation characteristics in the Community Atmosphere Model and their dependence on model physics and resolution. J. Adv. Model. Earth Syst., 11, 23522374, https://doi.org/10.1029/2018MS001536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., J. Norris, J. D. Neelin, J. Lu, L. R. Leung, and K. Sakaguchi, 2019: Thermodynamic and dynamic mechanisms for hydrological cycle intensification over the full probability distribution of precipitation events. J. Atmos. Sci., 76, 497516, https://doi.org/10.1175/JAS-D-18-0067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., J. D. Neelin, C. Chen, and J. Tu, 2009: Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming. J. Climate, 22, 19822005, https://doi.org/10.1175/2008JCLI2471.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630, https://doi.org/10.1175/JCLI3884.1.

  • Dai, A., T. Zhao, and J. Chen, 2018: Climate change and drought: A precipitation and evaporation perspective. Curr. Climate Change Rep., 4, 301312, https://doi.org/10.1007/s40641-018-0101-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., R. M. Rasmussen, C. Liu, K. Ikeda, and A. F. Prein, 2020: A new mechanism for warm-season precipitation response to global warming based on convection-permitting simulations. Climate Dyn., 55, 343368, https://doi.org/10.1007/s00382-017-3787-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • EC-Earth, 2019: EC-Earth-Consortium EC-Earth3-veg model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation, accessed 25 February 2020, https://doi.org/10.22033/ESGF/CMIP6.727.

    • Crossref
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organisation. Geosci. Model Dev. Discuss., 8, 10 53910 583, https://doi.org/10.5194/gmdd-8-10539-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and Coauthors, 2019: High climate sensitivity in the Community Earth System Model version 2 (CESM2). Geophys. Res. Lett., 46, 83298337, https://doi.org/10.1029/2019GL083978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, H., and Coauthors, 2018: NOAA-GFDL GFDL-CM4 model output. Earth System Grid Federation, accessed 1 July 2018, https://doi.org/10.22033/ESGF/CMIP6.1402.

    • Crossref
    • Export Citation
  • Haarsma, R. J., and Coauthors, 2016: High Resolution Model Intercomparison Project (HighResMIP). Geosci. Model Dev., 9, 41854208, https://doi.org/10.5194/gmd-9-4185-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., F. W. Zwiers, P. A. Stott, and V. V. Kharin, 2004: Detectability of anthropogenic changes in annual temperature and precipitation extremes. J. Climate, 17, 36833700, https://doi.org/10.1175/1520-0442(2004)017<3683:DOACIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., and Coauthors, 2007: Understanding and attributing climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 663–745.

  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katiraie-Boroujerdy, P. S., A. A. Asanjan, A. Chavoshian, K. Hsu, and S. Sorooshian, 2019: Assessment of seven CMIP5 model precipitation extremes over Iran based on a satellite-based climate data set. Int. J. Climatol., 39, 35053522, https://doi.org/10.1002/joc.6035.

    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., and F. W. Zwiers, 2000: Changes in the extremes in an ensemble of transient climate simulations with a coupled atmosphere–ocean GCM. J. Climate, 13, 37603788, https://doi.org/10.1175/1520-0442(2000)013<3760:CITEIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., F. W. Zwiers, X. Zhang, and G. C. Hegerl, 2007: Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Climate, 20, 14191444, https://doi.org/10.1175/JCLI4066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiktev, D., J. Caesar, L. V. Alexander, H. Shiogama, and M. Collier, 2007: Comparison of observed and multimodeled trends in annual extremes of temperature and precipitation. Geophys. Res. Lett., 34, L10702, https://doi.org/10.1029/2007GL029539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, S. C., C. Fu, C.-J. Shiu, J.-P. Chen, and F. Wu, 2009: Temperature dependence of global precipitation extremes. Geophys. Res. Lett., 36, L17702, https://doi.org/10.1029/2009GL040218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and S. Bony, 2012: Introduction to CMIP5. CLIVAR Exchanges, No. 56, International CLIVAR Project Office, Southampton, United Kingdom, 4–5 http://www.clivar.org/sites/default/files/documents/Exchanges56.pdf.

  • Meehl, G. A., J. M. Arblaster, and C. Tebaldi, 2005: Understanding future patterns of increased precipitation intensity in climate model simulations. Geophys. Res. Lett., 32, L18719, https://doi.org/10.1029/2005GL023680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. Stouffer, and K. E. Taylor, 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394, https://doi.org/10.1175/BAMS-88-9-1383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, S.-K., X. B. Zhang, F. W. Zwiers, P. Friederichs, and A. Hense, 2009: Signal detectability in extreme precipitation changes assessed from twentieth century climate simulations. Climate Dyn., 32, 95111, https://doi.org/10.1007/s00382-008-0376-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norris, J., G. Chen, and J. D. Neelin, 2019: Thermodynamic versus dynamic controls on extreme precipitation in a warming climate from the Community Earth System Model Large Ensemble. J. Climate, 32, 10251045, https://doi.org/10.1175/JCLI-D-18-0302.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2009: The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl. Acad. Sci. USA, 106, 14 77314 777, https://doi.org/10.1073/pnas.0907610106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, B. C., and Coauthors, 2016: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev., 9, 34613482, https://doi.org/10.5194/gmd-9-3461-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pall, P., M. R. Allen, and D. A. Stone, 2007: Testing the Clausius–Clapeyron constraint on changes in extreme precipitation under CO2 warming. Climate Dyn., 28, 351363, https://doi.org/10.1007/s00382-006-0180-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfahl, S., P. A. O’Gorman, and E. M. Fischer, 2017: Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Climate Change, 7, 423427, https://doi.org/10.1038/nclimate3287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riahi, K., and Coauthors, 2011: RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Climatic Change, 109, 3357, https://doi.org/10.1007/s10584-011-0149-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, M., and Coauthors, 2018: The benefits of global high resolution for climate simulation: Process-understanding and the enabling of stakeholder decisions at the regional scale. Bull. Amer. Meteor. Soc., 99, 23412359, https://doi.org/10.1175/BAMS-D-15-00320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., and Coauthors, 2016: Percentile indices for assessing changes in heavy precipitation events. Climatic Change, 137, 201216, https://doi.org/10.1007/s10584-016-1669-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scoccimarro, E., S. Gualdi, A. Bellucci, M. Zampieri, and A. Navarra, 2013: Heavy precipitation events in a warmer climate: Results from CMIP5 models. J. Climate, 26, 79027911, https://doi.org/10.1175/JCLI-D-12-00850.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scoccimarro, E., S. Gualdi, G. Villarini, G. Vecchi, M. Zhao, K. Walsh, and A. Navarra, 2014: Intense precipitation events associated with landfalling tropical cyclones in response to a warmer climate and increased CO2. J. Climate, 27, 46424654, https://doi.org/10.1175/JCLI-D-14-00065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scoccimarro, E., G. Villarini, M. Vichi, M. Zampieri, P. G. Fogli, A. Bellucci, and S. Gualdi, 2015: Projected changes in intense precipitation over Europe at the daily and sub-daily time scales. J. Climate, 28, 61936203, https://doi.org/10.1175/JCLI-D-14-00779.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scoccimarro, E., S. Gualdi, A. Bellucci, M. Zampieri, and A. Navarra, 2016: Heavy precipitation events over the Euro-Mediterranean region in a warmer climate: Results from CMIP5 models. Reg. Environ. Change, 16, 595602, https://doi.org/10.1007/s10113-014-0712-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, and L. Vogel, 2012: Does global warming cause intensified interannual hydroclimate variability? J. Climate, 25, 33553372, https://doi.org/10.1175/JCLI-D-11-00363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shiu, C.-J., S. C. Liu, C. Fu, A. Dai, and Y. Sun, 2012: How much do precipitation extremes change in a warming climate? Geophys. Res. Lett., 39, L17707, https://doi.org/10.1029/2012GL052762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sonkoué, D., D. Monkam, T. C. Fotso-Nguemo, Z. D. Yepdo, and D. A. Vondou, 2019: Evaluation and projected changes in daily rainfall characteristics over central Africa based on a multi-model ensemble mean of CMIP5 simulations. Theor. Appl. Climatol., 137, 21672186, https://doi.org/10.1007/s00704-018-2729-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y., S. Solomon, A. Dai, and R. Portmann, 2006: How often does it rain? J. Climate, 19, 916934, https://doi.org/10.1175/JCLI3672.1.

  • Sun, Y., S. Solomon, A. Dai, and R. Portmann, 2007: How often will it rain? J. Climate, 20, 48014818, https://doi.org/10.1175/JCLI4263.1.

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., K. Hayhoe, J. M. Arblaster, and G. A. Meehl, 2006: Going to the extremes: An intercomparison of model-simulated historical and future changes in extreme events. Climatic Change, 79, 185211, https://doi.org/10.1007/s10584-006-9051-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thackeray, C. W., A. M. DeAngelis, A. Hall, D. L. Swain, and X. Qu, 2018: On the connection between global hydrologic sensitivity and regional wet extremes. Geophys. Res. Lett., 45, 11343, https://doi.org/10.1029/2018GL079698.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toreti, A., and Coauthors, 2013: Projections of global changes in precipitation extremes from Coupled Model Intercomparison Project phase 5 models. Geophys. Res. Lett., 40, 48874892, https://doi.org/10.1002/grl.50940.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., A. Dai, R. Rasmussen, and D. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051218, https://doi.org/10.1175/BAMS-84-9-1205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and T. G. Shepherd, 2015: Attribution of climate extreme events. Nat. Climate Change, 5, 725730, https://doi.org/10.1038/nclimate2657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., D. A. Lavers, E. Scoccimarro, M. Zhao, M. F. Wehner, G. Vecchi, and T. Knutson, 2014: Sensitivity of tropical cyclone rainfall to idealized global scale forcings. J. Climate, 27, 46224641, https://doi.org/10.1175/JCLI-D-13-00780.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wetherald, R. T., and S. Manabe, 1999: Detectability of summer dryness caused by greenhouse warming. Climatic Change, 43, 495511, https://doi.org/10.1023/A:1005499220385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, T., and Coauthors, 2019: The Beijing Climate Center Climate System Model (BCC-CSM): The main progress from CMIP5 to CMIP6. Geosci. Model Dev., 12, 15731600, https://doi.org/10.5194/gmd-12-1573-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., and Coauthors, 2019: MRI MRI-ESM2.0 model output prepared for CMIP6 CMIP. Earth System Grid Federation, accessed 8 November 2019, https://doi.org/10.22033/ESGF/CMIP6.621.

    • Crossref
    • Export Citation
  • Zhang, W., G. Villarini, E. Scoccimarro, and G. Vecchi, 2017: Stronger influences of increased CO2 on subdaily precipitation extremes than at the daily scale. Geophys. Res. Lett., 44, 74647471, https://doi.org/10.1002/2017GL074024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., and Coauthors, 2018: The GFDL Global Atmosphere and Land Model AM4.0/LM4.0: 2. Model description, sensitivity studies, and tuning strategies. J. Adv. Model. Earth Syst., 10, 735769, https://doi.org/10.1002/2017MS001209.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 246 246 148
Full Text Views 32 32 17
PDF Downloads 44 44 24

Heavy Daily Precipitation Events in the CMIP6 Worst-Case Scenario: Projected Twenty-First-Century Changes

View More View Less
  • 1 Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Bologna, Italy
© Get Permissions
Restricted access

Abstract

Heavy precipitation is often the trigger for flooding and landslides, leading to significant societal and economic impacts, ranging from fatalities to damage to infrastructure to loss of crops and livestock. Therefore, it is critical that we have a better understanding of how it may be changing in the future. Based on model projections from phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5), future daily precipitation is likely to increase in intensity. The main goal of this study is to examine possible improvements in the representation of intense and extreme precipitation by a new set of climate models contributing to phase 6 of CMIP effort (CMIP6) and to quantify its projected changes under the highest emissions scenario by the end of the current century [i.e., Shared Socioeconomic Pathway (SSP) SSP5-8.5]. Daily precipitation data from six CMIP6 models were analyzed that have a nominal horizontal grid spacing around 100 km and provide data for the highest emissions scenario SSP5-8.5. Two of the six CMIP6 models overestimate the extreme precipitation (defined as the 99th percentile of the precipitation distribution) in the tropics, leading to large biases in the right tail of the daily precipitation over the tropics. Consistent with the CMIP5 results, the CMIP6 models projected increased heavy daily precipitation and increased width of the right tail of the precipitation distribution associated with increased water vapor content.

Denotes content that is immediately available upon publication as open access.

Corresponding author: Enrico Scoccimarro, enrico.scoccimarro@cmcc.it

Abstract

Heavy precipitation is often the trigger for flooding and landslides, leading to significant societal and economic impacts, ranging from fatalities to damage to infrastructure to loss of crops and livestock. Therefore, it is critical that we have a better understanding of how it may be changing in the future. Based on model projections from phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5), future daily precipitation is likely to increase in intensity. The main goal of this study is to examine possible improvements in the representation of intense and extreme precipitation by a new set of climate models contributing to phase 6 of CMIP effort (CMIP6) and to quantify its projected changes under the highest emissions scenario by the end of the current century [i.e., Shared Socioeconomic Pathway (SSP) SSP5-8.5]. Daily precipitation data from six CMIP6 models were analyzed that have a nominal horizontal grid spacing around 100 km and provide data for the highest emissions scenario SSP5-8.5. Two of the six CMIP6 models overestimate the extreme precipitation (defined as the 99th percentile of the precipitation distribution) in the tropics, leading to large biases in the right tail of the daily precipitation over the tropics. Consistent with the CMIP5 results, the CMIP6 models projected increased heavy daily precipitation and increased width of the right tail of the precipitation distribution associated with increased water vapor content.

Denotes content that is immediately available upon publication as open access.

Corresponding author: Enrico Scoccimarro, enrico.scoccimarro@cmcc.it
Save