• Alexander, M. J., and T. J. Dunkerton, 1999: A spectral parameterization of mean-flow forcing due to breaking gravity waves. J. Atmos. Sci., 56, 41674182, https://doi.org/10.1175/1520-0469(1999)056<4167:ASPOMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ambaum, M. H., B. J. Hoskins, and D. B. Stephenson, 2001: Arctic Oscillation or North Atlantic Oscillation? J. Climate, 14, 34953507, https://doi.org/10.1175/1520-0442(2001)014<3495:AOONAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and Coauthors, 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 179229, https://doi.org/10.1029/1999RG000073.

  • Bretherton, C. S., J. R. McCaa, and H. Grenier, 2004: A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part I: Description and 1D results. Mon. Wea. Rev., 132, 864882, https://doi.org/10.1175/1520-0493(2004)132<0864:ANPFSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bushell, A. C., and Coauthors, 2020: Evaluation of the quasi-biennial oscillation in global climate models for the SPARC QBO-initiative. Quart. J. Roy. Meteor. Soc., 146, https://doi.org/10.1002/QJ.3765, in press.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., and Coauthors, 2018: Overview of experiment design and comparison of models participating in phase 1 of the SPARC Quasi-Biennial Oscillation initiative (QBOi). Geosci. Model Dev., 11, 10091032, https://doi.org/10.5194/gmd-11-1009-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butler, A. H., L. M. Polvani, and C. Deser, 2014: Separating the stratospheric and tropospheric pathways of El Niño–Southern Oscillation teleconnections. Environ. Res. Lett., 9, 024014, https://doi.org/10.1088/1748-9326/9/2/024014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chun, H.-Y., and J.-J. Baik, 1998: Momentum flux by thermally induced internal gravity waves and its approximation for large-scale models. J. Atmos. Sci., 55, 32993310, https://doi.org/10.1175/1520-0469(1998)055<3299:MFBTII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, S. K., Y. Ming, and A. F. Adames, 2020: Monsoon low pressure system–like variability in an idealized moist model. J. Climate, 33, 20512074, https://doi.org/10.1175/JCLI-D-19-0289.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clement, A., P. DiNezio, and C. Deser, 2011: Rethinking the ocean’s role in the Southern Oscillation. J. Climate, 24, 40564072, https://doi.org/10.1175/2011JCLI3973.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and M. Barlow, 2005: The NAO, the AO, and global warming: How closely related? J. Climate, 18, 44984513, https://doi.org/10.1175/JCLI3530.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., A. Frei, and R. D. Rosen, 2005: The role of boundary conditions in AMIP-2 simulations of the NAO. J. Climate, 18, 973981, https://doi.org/10.1175/JCLI-3305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G., J. Whitaker, and P. Sardeshmukh, 2008: The 20th Century Reanalysis Project. Proc. Third WCRP Int. Conf. on Reanalysis, Tokyo, Japan, World Climate Research Programme, 511, http://wcrp.ipsl.jussieu.fr/Workshops/Reanalysis2008/Documents/V5-511_ea.pdf.

  • Coy, L., K. Wargan, A. M. Molod, W. R. McCarty, and S. Pawson, 2016: Structure and dynamics of the quasi-biennial oscillation in MERRA-2. J. Climate, 29, 53395354, https://doi.org/10.1175/JCLI-D-15-0809.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, P., and B. Tan, 2017: The nature of the Arctic Oscillation and diversity of the extreme surface weather anomalies it generates. J. Climate, 30, 55635584, https://doi.org/10.1175/JCLI-D-16-0467.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and Coauthors, 2020: The Community Earth System Model version 2 (CESM2). J. Adv. Model. Earth Syst., 12, e2019MS001916, https://doi.org/10.1029/2019MS001916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., M.-S. Yao, and J. Jonas, 2007: Will moist convection be stronger in a warmer climate? Geophys. Res. Lett., 34, L16703, https://doi.org/10.1029/2007GL030525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., Y. Chen, D. Kim, and M.-S. Yao, 2012: The MJO transition from shallow to deep convection in CloudSat/CALIPSO data and GISS GCM simulations. J. Climate, 25, 37553770, https://doi.org/10.1175/JCLI-D-11-00384.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., J. Wu, A. B. Wolf, Y. Chen, M.-S. Yao, and D. Kim, 2015: Constraints on cumulus parameterization from simulations of observed MJO events. J. Climate, 28, 64196442, https://doi.org/10.1175/JCLI-D-14-00832.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., 2000: On the teleconnectivity of the “Arctic Oscillation.” Geophys. Res. Lett., 27, 779782, https://doi.org/10.1029/1999GL010945.

  • Dilley, M., and B. N. Heyman, 1995: ENSO and disaster: Droughts, floods and El Niño/Southern Oscillation warm events. Disasters, 19, 181193, https://doi.org/10.1111/j.1467-7717.1995.tb00338.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donner, L., C. Seman, R. Hemler, and S.-M. Fan, 2001: A cumulus parameterization including mass fluxes, convective vertical velocities, and mesoscale effects: Thermodynamic and hydrological aspects in a general circulation model. J. Climate, 14, 34443463, https://doi.org/10.1175/1520-0442(2001)014<3444:ACPIMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donner, L., and Coauthors, 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J. Climate, 24, 34843519, https://doi.org/10.1175/2011JCLI3955.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., A. S. Phillips, and C. Deser, 2020: Evaluation of leading modes of climate variability in the CMIP archives. J. Climate, 33, 55275545, https://doi.org/10.1175/JCLI-D-19-1024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., and C. Franzke, 2006: Are the North Atlantic Oscillation and the northern annular mode distinguishable? J. Atmos. Sci., 63, 29152930, https://doi.org/10.1175/JAS3798.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., and B. A. Boville, 1994: “Downward control” of the mean meridional circulation and temperature distribution of the polar winter stratosphere. J. Atmos. Sci., 51, 22382245, https://doi.org/10.1175/1520-0469(1994)051<2238:COTMMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garner, S. T., 2005: A topographic drag closure built on an analytical base flux. J. Atmos. Sci., 62, 23022315, https://doi.org/10.1175/JAS3496.1.

  • Gates, W. L., and Coauthors, 1999: An overview of the results of the Atmospheric Model Intercomparison Project (AMIP1). Bull. Amer. Meteor. Soc., 80, 2955, https://doi.org/10.1175/1520-0477(1999)080<0029:AOOTRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geller, M. A., and Coauthors, 2016: Modeling the QBO—Improvements resulting from higher-model vertical resolution. J. Adv. Model. Earth Syst., 8, 10921105, https://doi.org/10.1002/2016MS000699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, https://doi.org/10.1175/2011JCLI4083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and Coauthors, 2019: The Whole Atmosphere Community Climate Model version 6 (WACCM6). J. Geophys. Res. Atmos., 124, 12 38012 403, https://doi.org/10.1029/2019JD030943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gleckler, P., C. Doutriaux, P. J. Durack, K. E. Taylor, Y. Zhang, D. N. Williams, E. Mason, and J. Servonnat, 2016: A more powerful reality test for climate models. Eos, Trans. Amer. Geophys. Union, 97, https://doi.org/10.1029/2016EO051663.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golaz, J.-C., V. E. Larson, and W. R. Cotton, 2002: A pdf-based model for boundary layer clouds. Part I: Method and model description. J. Atmos. Sci., 59, 35403551, https://doi.org/10.1175/1520-0469(2002)059<3540:APBMFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golaz, J.-C., and Coauthors, 2019: The DOE E3SM coupled model version 1: Overview and evaluation at standard resolution. J. Adv. Model. Earth Syst., 11, 20892129, https://doi.org/10.1029/2018MS001603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, G., D. Entekhabi, and J. Cohen, 2002: A large-ensemble model study of the wintertime AO–NAO and the role of interannual snow perturbations. J. Climate, 15, 34883499, https://doi.org/10.1175/1520-0442(2002)015<3488:ALEMSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gottschalck, J., and Coauthors, 2010: A framework for assessing operational Madden–Julian oscillation forecasts. Bull. Amer. Meteor. Soc., 91, 12471258, https://doi.org/10.1175/2010BAMS2816.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2011: GFDL’s CM3 coupled climate model: Characteristics of the ocean and sea ice simulations. J. Climate, 24, 35203544, https://doi.org/10.1175/2011JCLI3964.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J. E., G. L. Russell, D. Rind, P. Stone, A. Lacis, R. Ruedy, and L. Travis, 1983: Efficient three-dimensional models for climatic studies: Models I and II. Mon. Wea. Rev., 111, 609662, https://doi.org/10.1175/1520-0493(1983)111<0609:ETDGMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and Coauthors, 2019: Structure and performance of GFDL’s CM4.0 climate model. J. Adv. Model. Earth Syst., 11, 36913727, https://doi.org/10.1029/2019MS001829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and D. Dee, 2016: ERA5 reanalysis is in production. ECMWF Newsletter, No. 147, ECMWF, Reading, United Kingdom, 7, http://www.ecmwf.int/sites/default/files/elibrary/2016/16299-newsletter-no147-spring-2016.pdf.

  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iguchi, T., T. Kozu, R. Meneghini, J. Awaka, and K. Okamoto, 2000: Rain-profiling algorithm for the TRMM Precipitation Radar. J. Appl. Meteor., 39, 20382052, https://doi.org/10.1175/1520-0450(2001)040<2038:RPAFTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inness, P. M., J. M. Slingo, E. Guilyardi, and J. Cole, 2003: Simulation of the Madden–Julian oscillation in a coupled general circulation model. Part II: The role of the basic state. J. Climate, 16, 365382, https://doi.org/10.1175/1520-0442(2003)016<0365:SOTMJO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., and Coauthors, 2015: Vertical structure and physical processes of the Madden–Julian oscillation: Exploring key model physics in climate simulations. J. Geophys. Res. Atmos., 120, 47184748, https://doi.org/10.1002/2014JD022375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, I.-S., and S.-I. An, 1998: Kelvin and Rossby wave contributions to the SST oscillation of ENSO. J. Climate, 11, 24612469, https://doi.org/10.1175/1520-0442(1998)011<2461:KARWCT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelley, M., and Coauthors, 2019: GISS-E2.1: Configurations and climatology. J. Adv. Model. Earth Syst., https://doi.org/10.1029/2019MS002025, in press.

    • Search Google Scholar
    • Export Citation
  • Kim, D., A. H. Sobel, A. D. Del Genio, Y. Chen, S. J. Camargo, M.-S. Yao, M. Kelley, and L. Nazarenko, 2012: The tropical subseasonal variability simulated in the NASA GISS general circulation model. J. Climate, 25, 46414659, https://doi.org/10.1175/JCLI-D-11-00447.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., A. D. Del Genio, and M.-S. Yao, 2013: Moist convection scheme in Model E2. NASA GISS, 9 pp., https://www.giss.nasa.gov/tools/modelE/docs/kim_moistconvection.pdf.

  • Kim, H., M. A. Janiga, and K. Pegion, 2019: MJO propagation processes and mean biases in the SubX and S2S reforecasts. J. Geophys. Res. Atmos., 124, 93149331, https://doi.org/10.1029/2019JD031139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J., K. R. Sperber, P. J. Gleckler, C. J. Bonfils, and K. E. Taylor, 2019: Quantifying the agreement between observed and simulated extratropical modes of interannual variability. Climate Dyn., 52, 40574089, https://doi.org/10.1007/s00382-018-4355-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and K. Bryan, 1969: Climate calculations with a combined ocean–atmosphere model. J. Atmos. Sci., 26, 786789, https://doi.org/10.1175/1520-0469(1969)026<0786:CCWACO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masunaga, H., 2007: Seasonality and regionality of the Madden–Julian oscillation, Kelvin wave, and equatorial Rossby wave. J. Atmos. Sci., 64, 44004416, https://doi.org/10.1175/2007JAS2179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarlane, N., 1987: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44, 17751800, https://doi.org/10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. Stouffer, and K. E. Taylor, 2007: THE WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394, https://doi.org/10.1175/bams-88-9-1383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mills, M., and Coauthors, 2017: Radiative and chemical response to interactive stratospheric sulfate aerosols in fully coupled CESM1(WACCM). J. Geophys. Res. Atmos., 112, 13 06113 078, https://doi.org/10.1002/2017JD027006.

    • Search Google Scholar
    • Export Citation
  • Molod, A., L. Takacs, M. Suarez, and J. Bacmeister, 2015: Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model Dev., 8, 13391356, https://doi.org/10.5194/gmd-8-1339-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molod, A., and Coauthors, 2020: GEOS-S2S version 2: The GMAO high-resolution coupled model and assimilation system for seasonal prediction. J. Geophys. Res. Atmos., 125, e2019JD031767, https://doi.org/10.1029/2019JD031767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moorthi, S., and M. J. Suarez, 1992: Relaxed Arakawa–Schubert. A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120, 9781002, https://doi.org/10.1175/1520-0493(1992)120<0978:RASAPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., and Coauthors, 2016: The Pacific decadal oscillation, revisited. J. Climate, 29, 43994427, https://doi.org/10.1175/JCLI-D-15-0508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S., and C. S. Bretherton, 2009: The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model. J. Climate, 22, 34493469, https://doi.org/10.1175/2008JCLI2557.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pegion, K., and Coauthors, 2019: The Subseasonal Experiment (SubX): A multimodel subseasonal prediction experiment. Bull. Amer. Meteor. Soc., 100, 20432060, https://doi.org/10.1175/BAMS-D-18-0270.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, A. S., C. Deser, and J. T. Fasullo, 2014: Evaluating modes of variability in climate models. Eos, Trans. Amer. Geophys. Union, 95, 453455, https://doi.org/10.1002/2014EO490002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, N. A., 1956: The general circulation of the atmosphere: A numerical experiment. Quart. J. Roy. Meteor. Soc., 82, 123164, https://doi.org/10.1002/qj.49708235202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, https://doi.org/10.1175/JCLI-D-15-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasch, P. J., and Coauthors, 2019: An overview of the atmospheric component of the Energy Exascale Earth System Model. J. Adv. Model. Earth Syst., 11, 23772411, https://doi.org/10.1029/2019MS001629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, J. H., F. Sassi, and R. R. Garcia, 2010: Toward a physically based gravity wave source parameterization in a general circulation model. J. Atmos. Sci., 67, 136156, https://doi.org/10.1175/2009JAS3112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, J. H., C.-C. Chen, Q. Tang, S. Xie, and P. J. Rasch, 2019: Improved simulation of the QBO in E3SMv1. J. Adv. Model. Earth Syst., 11, 34033418, https://doi.org/10.1029/2019MS001763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rind, D., J. Jonas, N. K. Balachandran, G. A. Schmidt, and J. Lean, 2014: The QBO in two GISS global climate models: 1. Generation of the QBO. J. Geophys. Res. Atmos., 119, 87988824, https://doi.org/10.1002/2014JD021678.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rind, D., and Coauthors, 2020: GISS model E2.2: A climate model optimized for the middle atmosphere. J. Geophys. Res. Atmos., 125, e2019JD032204, https://doi.org/10.1029/2019JD032204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rivière, G., and M. Drouard, 2015: Dynamics of the northern annular mode at weekly time scales. J. Atmos. Sci., 72, 45694590, https://doi.org/10.1175/JAS-D-15-0069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, J., and M. McHugh, 2002: On the separability of the North Atlantic oscillation and Arctic oscillation. Climate Dyn., 19, 599608, https://doi.org/10.1007/s00382-002-0247-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rohde, R., and Coauthors, 2013: A new estimate of the average Earth surface land temperature spanning 1753 to 2011. Geoinf. Geostat. Overview, 1, https://doi.org/10.4172/2327-4581.1000101.

    • Search Google Scholar
    • Export Citation
  • Russell, G. L., J. R. Miller, and D. Rind, 1995: A coupled atmosphere-ocean model for transient climate change studies. Atmos.–Ocean, 33, 683730, https://doi.org/10.1080/07055900.1995.9649550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sarachik, E. S., and M. A. Cane, 2010: The El Niño–Southern Oscillation Phenomenon. Cambridge University Press, 384 pp., https://doi.org/10.1017/cbo9780511817496.

    • Crossref
    • Export Citation
  • Schenzinger, V., S. Osprey, L. Gray, and N. Butchart, 2017: Defining metrics of the quasi-biennial oscillation in global climate models. Geosci. Model Dev., 10, 21572168, https://doi.org/10.5194/gmd-10-2157-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and Coauthors, 2014: Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J. Adv. Model. Earth Syst., 6, 141184, https://doi.org/10.1002/2013MS000265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scinocca, J., and N. McFarlane, 2000: The parametrization of drag induced by stratified flow over anisotropic orography. Quart. J. Roy. Meteor. Soc., 126, 23532393, https://doi.org/10.1002/qj.49712656802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, J., 2019: The long- and short-lived North Atlantic Oscillation events in a simplified atmospheric model. J. Atmos. Sci., 76, 26732700, https://doi.org/10.1175/JAS-D-18-0288.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., and D. Kim, 2012: Simplified metrics for the identification of the Madden–Julian oscillation in models. Atmos. Sci. Lett., 13, 187193, https://doi.org/10.1002/asl.378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephenson, D. B., and Coauthors, 2006: North Atlantic Oscillation response to transient greenhouse gas forcing and the impact on European winter climate: A CMIP2 multi-model assessment. Climate Dyn., 27, 401420, https://doi.org/10.1007/s00382-006-0140-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, W. F., and R. T. Pierrehumbert, 1988: The impact of an orographic gravity wave drag parameterization on extended range predictions with a GCM. Eighth Conf. on Numerical Weather Prediction, Baltimore, MD, Amer. Meteor. Soc., 745–750.

  • Stoner, A. M. K., K. Hayhoe, and D. J. Wuebbles, 2009: Assessing general circulation model simulations of atmospheric teleconnection patterns. J. Climate, 22, 43484372, https://doi.org/10.1175/2009JCLI2577.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, https://doi.org/10.1029/2000JD900719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300, https://doi.org/10.1029/98GL00950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W., S. Lee, and M. P. Baldwin, 2003: Atmospheric processes governing the Northern Hemisphere annular mode/North Atlantic Oscillation. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 81–112.

    • Crossref
    • Export Citation
  • Vitart, F., 2017: Madden–Julian oscillation prediction and teleconnections in the S2S database. Quart. J. Roy. Meteor. Soc., 143, 22102220, https://doi.org/10.1002/qj.3079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D., and Coauthors, 2009: MJO simulation diagnostics. J. Climate, 22, 30063030, https://doi.org/10.1175/2008JCLI2731.1.

  • Wallace, J. M., 2000: North Atlantic Oscillation/annular mode: Two paradigms–one phenomenon. Quart. J. Roy. Meteor. Soc., 126, 791805, https://doi.org/10.1256/smsqj.56401.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci., 56, 374399, https://doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S., and Coauthors, 2018: Understanding cloud and convective characteristics in version 1 of the E3SM atmosphere model. J. Adv. Model. Earth Syst., 10, 26182644, https://doi.org/10.1029/2018MS001350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33, 407446, https://doi.org/10.1080/07055900.1995.9649539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., and Coauthors, 2018a: The GFDL global atmosphere and land model AM4.0/LM4.0: 2. Model description, sensitivity studies, and tuning strategies. J. Adv. Model. Earth Syst., 10, 735769, https://doi.org/10.1002/2017MS001209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., and Coauthors, 2018b: The GFDL global atmosphere and land model AM4.0/LM4.0: 1. Simulation characteristics with prescribed SSTs. J. Adv. Model. Earth Syst., 10, 691734, https://doi.org/10.1002/2017MS001208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and Coauthors, 2018: Toward the improvement of subseasonal prediction in the national centers for environmental prediction global ensemble forecast system. J. Geophys. Res. Atmos., 123, 67326745, https://doi.org/10.1029/2018JD028506.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 69 69 59
Full Text Views 15 15 11
PDF Downloads 15 15 11

Representation of Modes of Variability in Six U.S. Climate Models

View More View Less
  • 1 NASA Goddard Institute for Space Studies, New York, New York
  • 2 T-3 Solid Mechanics and Fluid Dynamics, Los Alamos National Laboratory, Los Alamos, New Mexico
  • 3 University of Michigan, Ann Arbor, Michigan
  • 4 Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • 5 Science Systems and Applications, Inc., Lanham, Maryland
  • 6 National Center for Atmospheric Research, Boulder, Colorado
  • 7 Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Livermore, California
  • 8 IMSG at Environmental Modeling Center, NOAA/National Centers for Environmental Prediction/National Weather Service, College Park, Maryland
  • 9 CCSR, Columbia University, New York, New York
  • 10 Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
© Get Permissions
Restricted access

Abstract

We compare the performance of several modes of variability across six U.S. climate modeling groups, with a focus on identifying robust improvements in recent models [including those participating in phase 6 of the Coupled Model Intercomparison Project (CMIP)] compared to previous versions. In particular, we examine the representation of the Madden–Julian oscillation (MJO), El Niño–Southern Oscillation (ENSO), the Pacific decadal oscillation (PDO), the quasi-biennial oscillation (QBO) in the tropical stratosphere, and the dominant modes of extratropical variability, including the southern annular mode (SAM), the northern annular mode (NAM) [and the closely related North Atlantic Oscillation (NAO)], and the Pacific–North American pattern (PNA). Where feasible, we explore the processes driving these improvements through the use of “intermediary” experiments that utilize model versions between CMIP3/5 and CMIP6 as well as targeted sensitivity experiments in which individual modeling parameters are altered. We find clear and systematic improvements in the MJO and QBO and in the teleconnection patterns associated with the PDO and ENSO. Some gains arise from better process representation, while others (e.g., the QBO) from higher resolution that allows for a greater range of interactions. Our results demonstrate that the incremental development processes in multiple climate model groups lead to more realistic simulations over time.

Corresponding author: Clara Orbe, clara.orbe@nasa.gov

Abstract

We compare the performance of several modes of variability across six U.S. climate modeling groups, with a focus on identifying robust improvements in recent models [including those participating in phase 6 of the Coupled Model Intercomparison Project (CMIP)] compared to previous versions. In particular, we examine the representation of the Madden–Julian oscillation (MJO), El Niño–Southern Oscillation (ENSO), the Pacific decadal oscillation (PDO), the quasi-biennial oscillation (QBO) in the tropical stratosphere, and the dominant modes of extratropical variability, including the southern annular mode (SAM), the northern annular mode (NAM) [and the closely related North Atlantic Oscillation (NAO)], and the Pacific–North American pattern (PNA). Where feasible, we explore the processes driving these improvements through the use of “intermediary” experiments that utilize model versions between CMIP3/5 and CMIP6 as well as targeted sensitivity experiments in which individual modeling parameters are altered. We find clear and systematic improvements in the MJO and QBO and in the teleconnection patterns associated with the PDO and ENSO. Some gains arise from better process representation, while others (e.g., the QBO) from higher resolution that allows for a greater range of interactions. Our results demonstrate that the incremental development processes in multiple climate model groups lead to more realistic simulations over time.

Corresponding author: Clara Orbe, clara.orbe@nasa.gov
Save