• An, Z. S., and Coauthors, 2015: Global monsoon dynamics and climate change. Annu. Rev. Earth Planet. Sci., 43, 2977, https://doi.org/10.1146/annurev-earth-060313-054623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booth, B. B. B., N. J. Dunstone, P. R. Halloran, T. Andrews, and N. Bellouin, 2012: Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 484, 228232, https://doi.org/10.1038/nature10946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chylek, P., C. K. Folland, H. A. Dijkstra, G. Lesins, and M. K. Dubey, 2011: Ice-core data evidence for a prominent near 20 year time-scale of the Atlantic multidecadal oscillation. Geophys. Res. Lett., 38, L13704, https://doi.org/10.1029/2011GL047501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coats, S., and J. E. Smerdon, 2017: The Atlantic’s internal drum beat. Nat. Geosci., 10, 470471, https://doi.org/10.1038/ngeo2970.

  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, https://doi.org/10.1002/qj.776.

  • Cubasch, U., R. Voss, G. C. Hegerl, J. Waszkewitz, and T. J. Crowley, 1997: Simulation of the influence of solar radiation variations on the global climate with an ocean–atmosphere general circulation model. Climate Dyn., 13, 757767, https://doi.org/10.1007/s003820050196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and M. E. Mann, 2000: Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dyn., 16, 661676, https://doi.org/10.1007/s003820000075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., S. Manabe, and R. J. Stouffer, 1993: Interdecadal oscillation of the thermohaline circulation in a coupled ocean–atmosphere model. J. Climate, 6, 19932011, https://doi.org/10.1175/1520-0442(1993)006<1993:IVOTTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, https://doi.org/10.1175/JCLI3473.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B. W., R. T. Sutton, and A. A. Scaife, 2006: Multidecadal modulation of El Niño–Southern Oscillation (ENSO) variance by Atlantic Ocean sea surface temperatures. Geophys. Res. Lett., 33, L08705, https://doi.org/10.1029/2006GL025766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestasnunez, and P. Trimble, 2001: The Atlantic multi-decadal oscillation and its relation to rainfall and river flows in the continental US. Geophys. Res. Lett., 28, 20772080, https://doi.org/10.1029/2000GL012745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fang, K., and Coauthors, 2019: Interdecadal modulation of the Atlantic Multi-decadal Oscillation (AMO) on southwest China’s temperature over the past 250 years. Climate Dyn., 52, 20552065, https://doi.org/10.1007/s00382-018-4244-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, S., and Q. Hu, 2008: How the North Atlantic multidecadal oscillation may have influenced the Indian summer monsoon during the past two millennia. Geophys. Res. Lett., 35, L01707, https://doi.org/10.1029/2007GL032484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, S., O. Hu, and R. J. Oglesby, 2011: Influence of Atlantic sea surface temperatures on persistent drought in North America. Climate Dyn., 37, 569586, https://doi.org/10.1007/s00382-010-0835-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fleitmann, D., S. J. Burns, M. Mudelsee, U. Neff, J. Kramers, A. Mangini, and A. Matter, 2003: Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman. Science, 300, 17371739, https://doi.org/10.1126/science.1083130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folland, C. K., T. N. Palmer, and D. E. Parker, 1986: Sahel rainfall and worldwide sea temperatures, 1901–85. Nature, 320, 602607, https://doi.org/10.1038/320602a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forster, P. M. de F., M. Blackburn, R. Glover, and K. P. Shine, 2000: An examination of climate sensitivity for dealized climate change experiments in an intermediate general circulation model. Climate Dyn., 16, 833849, https://doi.org/10.1007/s003820000083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, L. H., Z. W. Yan, and X. W. Quan, 2014: Observed and SST-forced multi-decadal variability in global land surface air temperature. Climate Dyn., 44, 359369, https://doi.org/10.1007/s00382-014-2121-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geng, X., W. Zhang, M. F. Stuecker, P. Liu, F. Jin, and G. Tan, 2017: Decadal modulation of the ENSO–East Asian winter monsoon relationship by the Atlantic multidecadal oscillation. Climate Dyn., 49, 25312544, https://doi.org/10.1007/s00382-016-3465-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghosh, R., W. A. Müller, J. Baehr, and J. Bader, 2016: Impact of observed North Atlantic multidecadal variations to European summer climate: A linear baroclinic response to surface heating. Climate Dyn., 48, 35473563, https://doi.org/10.1007/s00382-016-3283-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., C. W. Landsea, A. M. Mestas-Nuñez, and W. M. Gray, 2001: The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293, 474479, https://doi.org/10.1126/science.1060040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., M. S. Madhusoodanan, C. P. Neema, and D. Segupta, 2006: A physical mechanism for North Atlantic SST influence on the Indian summer monsoon. Geophys. Res. Lett., 33, L02706, https://doi.org/10.1029/2005GL024803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., J. D. Sheaffer, and C. W. Landsea, 1997: Climate trends associated with multidecadal variability of Atlantic hurricane activity. Hurricanes: Climate and Socioeconomic Impacts, H. F. Diaz and R. S. Pulwarty, Eds., Springer, 15–53.

    • Crossref
    • Export Citation
  • Greatbatch, R. J., X. Sun, and X.-Q. Yang, 2013: Impact of variability in the Indian summer monsoon on the East Asian summer monsoon. Atmos. Sci. Lett., 14, 1419, https://doi.org/10.1002/asl2.408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grossmann, I., and P. J. Klotzbach, 2009: A review of North Atlantic modes of natural variability and their driving mechanisms. J. Geophys. Res., 114, D24107, https://doi.org/10.1029/2009JD012728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gupta, A. K., D. M. Anderson, and J. T. Overpeck, 2003: Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature, 421, 354357, https://doi.org/10.1038/nature01340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hao, X., and S. He, 2017: Combined effect of ENSO-like and Atlantic multidecadal oscillation SSTAs on the interannual variability of the East Asian winter monsoon. J. Climate, 30, 26972716, https://doi.org/10.1175/JCLI-D-16-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and M. J. Rodwell, 1995: A model of the Asian summer monsoon. Part I: The global scale. J. Atmos. Sci., 52, 13291340, https://doi.org/10.1175/1520-0469(1995)052<1329:AMOTAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Q., and M. C. Veres, 2016: Atmospheric responses to North Atlantic SST anomalies in idealized experiments. Part II: North American precipitation. J. Climate, 29, 659671, https://doi.org/10.1175/JCLI-D-14-00751.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joshi, M. M., M. Stringer, K. Van der Wiel, A. O’Callaghan, and S. Fueglistaler, 2015: IGCM4: A fast, parallel and flexible intermediate climate model. Geosci. Model Dev., 8, 11571167, https://doi.org/10.5194/gmd-8-1157-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kajtar, J. B., M. Collins, L. M. Frankcombe, M. H. England, T. J. Osborn, and M. Juniper, 2019: Global mean surface temperature response to large-scale patterns of variability in observations and CMIP5. Geophys. Res. Lett., 46, 22322241, https://doi.org/10.1029/2018GL081462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keenlyside, N. S., J. Ba, J. Mecking, N. O. Omrani, M. Latif, R. Zhang, and R. Msadek, 2016: North Atlantic multi-decadal variability mechanisms and predictability. Climate Change: Multidecadal and Beyond, C.-P. Chang et al., Eds., World Scientific, 141–157.

    • Crossref
    • Export Citation
  • Kerr, R. A., 2000: A North Atlantic climate pacemaker for the centuries. Science, 288, 19841985, https://doi.org/10.1126/science.288.5473.1984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, J. R., R. J. Allan, C. K. Folland, M. Vellinga, and M. E. Mann, 2005: A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32, L20708, https://doi.org/10.1029/2005GL024233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, J. R., C. K. Folland, and A. A. Scaife, 2006: Climate impacts of the Atlantic multidecadal oscillation. Geophys. Res. Lett., 33, L17706, https://doi.org/10.1029/2006GL026242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knudsen, M. F., M.-S. Seidenkrantz, B. H. Jacobsen, and A. Kuijpers, 2011: Tracking the Atlantic multidecadal oscillation through the last 8,000 years. Nat. Commun., 2, 178, https://doi.org/10.1038/ncomms1186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, L., and V. Krishnamurthy, 2016: Teleconnections of Indian monsoon rainfall with AMO and Atlantic tripole. Climate Dyn., 46, 22692285, https://doi.org/10.1007/s00382-015-2701-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, S., and G. T. Bates, 2007: Influence of the Atlantic multidecadal oscillation on the winter climate of East China. Adv. Atmos. Sci., 24, 126135, https://doi.org/10.1007/s00376-007-0126-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, S., and F.-F. Luo, 2013: Lead-lag connection of the Atlantic multidecadal oscillation (AMO) with East Asian surface air temperatures in instrumental records. Atmos. Oceanic Sci. Lett., 6, 138143, https://doi.org/10.1080/16742834.2013.11447070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, S., J. Perlwitz, X. Quan, and M. P. Hoerling, 2008: Modelling the influence of North Atlantic multidecadal warmth on the Indian summer rainfall. Geophys. Res. Lett., 35, L05804, https://doi.org/10.1029/2007GL032901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, S., Y. Jing, and F. Luo, 2015: The potential connection between China surface air temperature and the Atlantic multidecadal oscillation (AMO) in the pre-industrial period. Sci. China Earth Sci., 58, 18141826, https://doi.org/10.1007/s11430-015-5091-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, J.-S., B. Wu, and T.-J. Zhou, 2016: Is the interdecadal circumglobal teleconnection pattern excited by the Atlantic multidecadal oscillation? Atmos. Oceanic Sci. Lett., 9, 451457, https://doi.org/10.1080/16742834.2016.1233800.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., and J. C. H. Chiang, 2012: Coordinated abrupt weakening of the Eurasian and North African monsoons in the 1960s and links to extratropical North Atlantic cooling. J. Climate, 25, 35323548, https://doi.org/10.1175/JCLI-D-11-00219.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, R., B. Dong, and H. Ding, 2006: Impact of the Atlantic multidecadal oscillation on the Asian summer monsoon. Geophys. Res. Lett., 33, L24701, https://doi.org/10.1029/2006GL027655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, F., S. Li, and T. Furevik, 2011: The connection between the Atlantic multidecadal oscillation and the Indian summer monsoon in Bergen Climate Model version 2.0. J. Geophys. Res., 116, D19117, https://doi.org/10.1029/2011JD015848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, F., S. Li, Y. Gao, N. Keenlyside, L. Svendsen, and T. Furevik, 2018: The connection between the Atlantic multidecadal oscillation and the Indian summer monsoon in CMIP5 models. Climate Dyn., 51, 30233039, https://doi.org/10.1007/s00382-017-4062-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., M. A. Palecki, and J. L. Betancourt, 2004: Pacific and Atlantic Ocean influences on multi-decadal drought frequency in the United States. Proc. Natl. Acad. Sci. USA, 101, 41364141, https://doi.org/10.1073/pnas.0306738101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monerie, P.-A., J. Robson, B. Dong, D. L. R. Hodson, and N. P. Klingaman, 2019: Effect of the Atlantic multidecadal variability on the global monsoon. Geophys. Res. Lett., 46, 17651775, https://doi.org/10.1029/2018GL080903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Msadek, R., and C. Frankignoul, 2009: Atlantic multidecadal oceanic variability and its influence on the atmosphere in a climate model. Climate Dyn., 33, 4562, https://doi.org/10.1007/s00382-008-0452-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Msadek, R., C. Frankignoul, and L. Z. X. Li, 2011: Mechanisms of the atmospheric response to North Atlantic multidecadal variability: A model study. Climate Dyn., 36, 12551276, https://doi.org/10.1007/s00382-010-0958-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Callaghan, A., M. Joshi, D. Stevens, and D. Mitchell, 2014: The effects of different sudden stratospheric warming types on the ocean. Geophys. Res. Lett., 41, 77397745, https://doi.org/10.1002/2014GL062179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oglesby, R., S. Feng, Q. Hu, and C. Rowe, 2012: The role of the Atlantic multidecadal oscillation on medieval drought in North America: Synthesizing results from proxy data and climate models. Global Planet. Change, 84-85, 5665, https://doi.org/10.1016/j.gloplacha.2011.07.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Reilly, C. H., L. Zanna, and T. Woollings, 2019: Assessing external and internal sources of Atlantic multidecadal variability using models, proxy data, and early instrumental indices. J. Climate, 32, 77277745, https://doi.org/10.1175/JCLI-D-19-0177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otterå, O. H., M. Bentsen, H. Drange, and L. Suo, 2010: External forcing as a metronome for Atlantic multidecadal variability. Nat. Geosci., 3, 688694, https://doi.org/10.1038/ngeo955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prasad, V. S., and T. Hayashi, 2005: Onset and withdrawal of Indian summer monsoon. Geophys. Res. Lett., 32, L20715, https://doi.org/10.1029/2005GL023269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, C., J. Yu, and G. Chen, 2014: Decadal summer drought frequency in China: The increasing influence of the Atlantic multi-decadal oscillation. Environ. Res. Lett., 9, 124004, https://doi.org/10.1088/1748-9326/9/12/124004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354384, https://doi.org/10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ratna, S. B., D. R. Sikka, M. Dalvi, and J. V. Ratnam, 2011: Dynamical simulation of Indian summer monsoon circulation, rainfall and its interannual variability using a high resolution atmospheric general circulation model. Int. J. Climatol., 31, 19271942, https://doi.org/10.1002/joc.2202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ratna, S. B., T. J. Osborn, M. Joshi, B. Yang, and J. Wang, 2019: Identifying teleconnections and multidecadal variability of East Asian surface temperature during the last millennium in CMIP5 simulations. Climate Past, 15, 18251844, https://doi.org/10.5194/cp-15-1825-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlesinger, M. E., and N. Ramankutty, 1994: An oscillation in the global climate system of period 65–70 years. Nature, 367, 723726, https://doi.org/10.1038/367723a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., M. J. Suarez, P. J. Pegion, R. D. Koster, and J. T. Bacmeister, 2004: Causes of long-term drought in the US Great Plains. J. Climate, 17, 485503, https://doi.org/10.1175/1520-0442(2004)017<0485:COLDIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., and Coauthors, 2009: A U.S. CLIVAR project to assess and compare the responses of global climate models to drought-related SST forcing patterns: Overview and results. J. Climate, 22, 52515272, https://doi.org/10.1175/2009JCLI3060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Si, D., and Y. Ding, 2016: Oceanic forcings of the interdecadal variability in East Asian summer rainfall. J. Climate, 29, 76337649, https://doi.org/10.1175/JCLI-D-15-0792.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sikka, D. R., 1980: Some aspects of the large scale fluctuations of summer monsoon rainfall over India in relation to fluctuations in the planetary and regional scale circulation parameters. J. Earth Syst. Sci., 89, 179195, https://doi.org/10.1007/bf02913749.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sikka, D. R., and S. B. Ratna, 2011: On improving the ability of a high resolution atmospheric general circulation model for dynamical seasonal prediction of the extreme seasons of the Indian summer monsoon. Mausam, 62, 339360.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., 1987: The development and verification of a cloud prediction scheme for the ECMWF model. Quart. J. Roy. Meteor. Soc., 113, 899927, https://doi.org/10.1002/qj.49711347710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soman, M. K., and K. K. Kumar, 1993: Space–time evolution of meteorological features associated with the onset of Indian summer monsoon. Mon. Wea. Rev., 121, 11771194, https://doi.org/10.1175/1520-0493(1993)121<1177:STEOMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, C., F. Kucharski, J. Li, F. Jin, I. Kang, and R. Ding, 2017: Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation. Nat. Commun., 8, 15998, https://doi.org/10.1038/ncomms15998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y. B., S. C. Clemens, C. Morrill, X. Lin, X. Wang, and Z. An, 2012: Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon. Nat. Geosci., 5, 4649, https://doi.org/10.1038/ngeo1326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and D. L. R. Hodson, 2005: Atlantic Ocean forcing of North American and European summer climate. Science, 309, 115118, https://doi.org/10.1126/science.1109496.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talento, S., T. J. Osborn, M. Joshi, S. B. Ratna, and J. Luterbacher, 2020: Response of the Asian summer monsoons to a high-latitude thermal forcing: Mechanisms and nonlinearities. Climate Dyn., 54, 39273944, https://doi.org/10.1007/s00382-020-05210-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M. F., Y. Kushnir, R. Seager, and C. H. Li, 2011: Robust feathers of Atlantic multi-decadal variability and its climate impacts. Geophys. Res. Lett., 38, L17705, https://doi.org/10.1029/2011GL048712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., D. P. Stepaniak, and J. M. Caron, 2000: The global monsoon as seen through the divergent atmospheric circulation. J. Climate, 13, 39693993, https://doi.org/10.1175/1520-0442(2000)013<3969:TGMAST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Wiel, K., A. J. Matthews, M. M. Joshi, and D. P. Stevens, 2016: Why the south Pacific convergence zone is diagonal? Climate Dyn., 46, 16831698, https://doi.org/10.1007/s00382-015-2668-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and Z. Fan, 1999: Choice of South Asian summer monsoon indices. Bull. Amer. Meteor. Soc., 80, 629638, https://doi.org/10.1175/1520-0477(1999)080<0629:COSASM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., B. Yang, F. C. Ljungqvist, and Y. Zhao, 2013: The relationship between the Atlantic multidecadal oscillation and temperature variability in China during the last millennium. J. Quat. Sci., 28, 653658, https://doi.org/10.1002/jqs.2658.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., B. Yang, C. Qin, S. Kang, M. He, and Z. Wang, 2014: Tree-ring inferred annual mean temperature variations on the southeastern Tibetan Plateau during the last millennium and their relationships with the Atlantic multidecadal oscillation. Climate Dyn., 43, 627640, https://doi.org/10.1007/s00382-013-1802-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., B. Yang, F. C. Ljungqvist, J. Luterbacher, T. J. Osborn, K. R. Briffa, and E. Zorita, 2017: Internal and external forcing of multidecadal Atlantic climate variability over the past 1,200 years. Nat. Geosci., 10, 512517, https://doi.org/10.1038/ngeo2962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., S. Li, and D. Luo, 2009: Seasonal response of Asian monsoonal climate to the Atlantic multidecadal oscillation. J. Geophys. Res., 114, D02112, https://doi.org/10.1029/2008jd010929.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877926, https://doi.org/10.1002/qj.49711850705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, J., Z. W. Yan, and P. L. Wu, 2013: Multidecadal variability in local growing season during 1901–2009. Climate Dyn., 41, 295305, https://doi.org/10.1007/s00382-012-1438-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, J., K. Tu, Z. Yan, and Y. Qi, 2016: The super-heat wave in eastern China during July–August 2013: A perspective of climate change. Int. J. Climatol., 36, 12911298, https://doi.org/10.1002/joc.4424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., and C. Wang, 2013: Multidecadal North Atlantic sea surface temperature and Atlantic meridional overturning circulation variability in CMIP5 historical simulations. J. Geophys. Res., 118, 57725791, https://doi.org/10.1002/jgrc.20390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2005: Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J. Climate, 18, 18531860, https://doi.org/10.1175/JCLI3460.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2006: Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett., 33, L17712, https://doi.org/10.1029/2006GL026267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., X. Sun, and X.-Q. Yang, 2018: Understanding the interdecadal variability of East Asian summer monsoon precipitation: Joint influence of three oceanic signals. J. Climate, 31, 54855506, https://doi.org/10.1175/JCLI-D-17-0657.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, X. M., S. L. Li, F. Luo, Y. Gao, and T. Furevik, 2015: Air–sea coupling enhances East Asian winter climate response to the Atlantic multidecadal oscillation (AMO). Adv. Atmos. Sci., 32, 16471659, https://doi.org/10.1007/s00376-015-5030-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., T. Wang, and J. Ma, 2016: Influence of internal decadal variability on the summer rainfall in eastern China as simulated by CCSM4. Adv. Atmos. Sci., 33, 706714, https://doi.org/10.1007/s00376-016-5269-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 102 102 37
Full Text Views 17 17 10
PDF Downloads 16 16 8

The Influence of Atlantic Variability on Asian Summer Climate Is Sensitive to the Pattern of the Sea Surface Temperature Anomaly

View More View Less
  • 1 Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
  • 2 Department of Geography, Climatology, Climate Dynamics and Climate Change, and Centre of International Development and Environmental Research, Justus Liebig University Giessen, Giessen, Germany, and World Meteorological Organization, Science and Innovation Department, Geneva, Switzerland
© Get Permissions
Restricted access

Abstract

We simulate the response of Asian summer climate to Atlantic multidecadal oscillation (AMO)-like sea surface temperature (SST) anomalies using an intermediate-complexity general circulation model (IGCM4). Experiments are performed with seven individual AMO SST anomalies obtained from CMIP5/PMIP3 global climate models as well as their multimodel mean, globally and over the North Atlantic Ocean only, for both the positive and negative phases of the AMO. During the positive (warm) AMO phase, a Rossby wave train propagates eastward, causing a high pressure and warm and dry surface anomalies over eastern China and Japan. During the negative (cool) phase of the AMO, the midlatitude Rossby wave train is less robust, but the model does simulate a warm and dry South Asian monsoon, associated with the movement of the intertropical convergence zone in the tropical Atlantic. The circulation response and associated temperature and precipitation anomalies are sensitive to the choice of AMO SST anomaly pattern. A comparison between global SST and North Atlantic SST perturbation experiments indicates that East Asian climate anomalies are forced from the North Atlantic region, whereas South Asian climate anomalies are more strongly affected by the AMO-related SST anomalies outside the North Atlantic region. Experiments conducted with different amplitudes of negative and positive AMO anomalies show that the temperature response is linear with respect to SST anomaly but the precipitation response is nonlinear.

Denotes content that is immediately available upon publication as open access.

This article is licensed under a Creative Commons Attribution 4.0 license (http://creativecommons.org/licenses/by/4.0/).

© 2020 American Meteorological Society.

Corresponding author: Satyaban B. Ratna, s.bishoyi-ratna@uea.ac.uk

Abstract

We simulate the response of Asian summer climate to Atlantic multidecadal oscillation (AMO)-like sea surface temperature (SST) anomalies using an intermediate-complexity general circulation model (IGCM4). Experiments are performed with seven individual AMO SST anomalies obtained from CMIP5/PMIP3 global climate models as well as their multimodel mean, globally and over the North Atlantic Ocean only, for both the positive and negative phases of the AMO. During the positive (warm) AMO phase, a Rossby wave train propagates eastward, causing a high pressure and warm and dry surface anomalies over eastern China and Japan. During the negative (cool) phase of the AMO, the midlatitude Rossby wave train is less robust, but the model does simulate a warm and dry South Asian monsoon, associated with the movement of the intertropical convergence zone in the tropical Atlantic. The circulation response and associated temperature and precipitation anomalies are sensitive to the choice of AMO SST anomaly pattern. A comparison between global SST and North Atlantic SST perturbation experiments indicates that East Asian climate anomalies are forced from the North Atlantic region, whereas South Asian climate anomalies are more strongly affected by the AMO-related SST anomalies outside the North Atlantic region. Experiments conducted with different amplitudes of negative and positive AMO anomalies show that the temperature response is linear with respect to SST anomaly but the precipitation response is nonlinear.

Denotes content that is immediately available upon publication as open access.

This article is licensed under a Creative Commons Attribution 4.0 license (http://creativecommons.org/licenses/by/4.0/).

© 2020 American Meteorological Society.

Corresponding author: Satyaban B. Ratna, s.bishoyi-ratna@uea.ac.uk
Save