• Andrews, D. G., C. B. Leovy, and J. R. Holton, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Birner, T., 2006: Fine-scale structure of the extratropical tropopause region. J. Geophys. Res., 111, D04104, https://doi.org/10.1029/2005JD006301.

    • Search Google Scholar
    • Export Citation
  • Birner, T., and E. J. Charlesworth, 2017: On the relative importance of radiative and dynamical heating for tropical tropopause temperatures. J. Geophys. Res. Atmos., 122, 67826797, https://doi.org/10.1002/2016JD026445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brasseur, G. P., and S. Solomon, 2005: Aeronomy of the Middle Atmosphere. Springer, 646 pp.

    • Crossref
    • Export Citation
  • Brewer, A., 1949: Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere. Quart. J. Roy. Meteor. Soc., 75, 351363, https://doi.org/10.1002/qj.49707532603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butchart, N., and A. A. Scaife, 2001: Removal of chlorofluorocarbons by increased mass exchange between the stratosphere and troposphere in a changing climate. Nature, 410, 799802, https://doi.org/10.1038/35071047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calvo, N., L. M. Polvani, and S. Solomon, 2015: On the surface impact of Arctic stratospheric ozone extremes. Environ. Res. Lett., 10, 094003, https://doi.org/10.1088/1748-9326/10/9/094003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charlesworth, E. J., T. Birner, and J. R. Albers, 2019: Ozone transport–radiation feedbacks in the tropical tropopause layer. Geophys. Res. Lett., 46, 14 19514 202, https://doi.org/10.1029/2019GL084679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2010: Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models. Atmos. Chem. Phys., 10, 94519472, https://doi.org/10.5194/acp-10-9451-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fels, S., J. Mahlman, M. Schwarzkopf, and R. Sinclair, 1980: Stratospheric sensitivity to perturbations in ozone and carbon dioxide: Radiative and dynamical response. J. Atmos. Sci., 37, 22652297, https://doi.org/10.1175/1520-0469(1980)037<2265:SSTPIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forster, P. M., and K. P. Shine, 1997: Radiative forcing and temperature trends from stratospheric ozone changes. J. Geophys. Res., 102, 10 84110 855, https://doi.org/10.1029/96JD03510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forster, P. M., and K. P. Shine, 1999: Stratospheric water vapour changes as a possible contributor to observed stratospheric cooling. Geophys. Res. Lett., 26, 33093312, https://doi.org/10.1029/1999GL010487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forster, P. M., and K. P. Shine, 2002: Assessing the climate impact of trends in stratospheric water vapor. Geophys. Res. Lett., 29, 1086, https://doi.org/10.1029/2001GL013909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., A. Dessler, T. Dunkerton, I. Folkins, Q. Fu, and P. W. Mote, 2009: Tropical tropopause layer. Rev. Geophys., 47, RG1004, https://doi.org/10.1029/2008RG000267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., P. Haynes, and P. Forster, 2011: The annual cycle in lower stratospheric temperatures revisited. Atmos. Chem. Phys., 11, 37013711, https://doi.org/10.5194/acp-11-3701-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fusco, A. C., and M. L. Salby, 1999: Interannual variations of total ozone and their relationship to variations of planetary wave activity. J. Climate, 12, 16191629, https://doi.org/10.1175/1520-0442(1999)012<1619:IVOTOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., and S. Solomon, 1994: A new numerical model of the middle atmosphere: 2. Ozone and related species. J. Geophys. Res., 99, 12 93712 951, https://doi.org/10.1029/94JD00725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., and W. J. Randel, 2008: Acceleration of the Brewer–Dobson circulation due to increases in greenhouse gases. J. Atmos. Sci., 65, 27312739, https://doi.org/10.1175/2008JAS2712.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilford, D. M., and S. Solomon, 2017: Radiative effects of stratospheric seasonal cycles in the tropical upper troposphere and lower stratosphere. J. Climate, 30, 27692783, https://doi.org/10.1175/JCLI-D-16-0633.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., and D. W. Thompson, 2003: Simulation of recent Southern Hemisphere climate change. Science, 302, 273275, https://doi.org/10.1126/science.1087440.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and D. W. Thompson, 2013: On the signatures of equatorial and extratropical wave forcing in tropical tropopause layer temperatures. J. Atmos. Sci., 70, 10841102, https://doi.org/10.1175/JAS-D-12-0163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haase, S., and K. Matthes, 2019: The importance of interactive chemistry for stratosphere–troposphere coupling. Atmos. Chem. Phys., 19, 34173432, https://doi.org/10.5194/acp-19-3417-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitchcock, P., T. G. Shepherd, and S. Yoden, 2010: On the approximation of local and linear radiative damping in the middle atmosphere. J. Atmos. Sci., 67, 20702085, https://doi.org/10.1175/2009JAS3286.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and W. M. Wehrbein, 1980: A numerical model of the zonal mean circulation of the middle atmosphere. Pure Appl. Geophys., 118, 284306, https://doi.org/10.1007/BF01586455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivy, D. J., S. Solomon, N. Calvo, and D. W. Thompson, 2017: Observed connections of Arctic stratospheric ozone extremes to Northern Hemisphere surface climate. Environ. Res. Lett., 12, 024004, https://doi.org/10.1088/1748-9326/aa57a4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiehl, J., and S. Solomon, 1986: On the radiative balance of the stratosphere. J. Atmos. Sci., 43, 15251534, https://doi.org/10.1175/1520-0469(1986)043<1525:OTRBOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsh, D. R., M. J. Mills, D. E. Kinnison, J.-F. Lamarque, N. Calvo, and L. M. Polvani, 2013: Climate change from 1850 to 2005 simulated in CESM1(WACCM). J. Climate, 26, 73727391, https://doi.org/10.1175/JCLI-D-12-00558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ming, A., A. C. Maycock, P. Hitchcock, and P. Haynes, 2017: The radiative role of ozone and water vapour in the annual temperature cycle in the tropical tropopause layer. Atmos. Chem. Phys., 17, 56775701, https://doi.org/10.5194/acp-17-5677-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, P. A., and J. E. Rosenfield, 1997: Stratospheric thermal damping times. Geophys. Res. Lett., 24, 433436, https://doi.org/10.1029/96GL03720.

  • Norton, W., 2006: Tropical wave driving of the annual cycle in tropical tropopause temperatures. Part II: Model results. J. Atmos. Sci., 63, 14201431, https://doi.org/10.1175/JAS3698.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petty, G. W., 2006: A First Course in Atmospheric Radiation. Sundog Publishing, 459 pp.

  • Plass, G. N., 1956: The influence of the 9.6 micron ozone band on the atmospheric infra-red cooling rate. Quart. J. Roy. Meteor. Soc., 82, 3044, https://doi.org/10.1002/qj.49708235104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., and Coauthors, 2019: Large impacts, past and future, of ozone-depleting substances on Brewer-Dobson circulation trends: A multimodel assessment. J. Geophys. Res. Atmos., 124, 66696680, https://doi.org/10.1029/2018JD029516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramaswamy, V., and Coauthors, 2001: Stratospheric temperature trends: Observations and model simulations. Rev. Geophys., 39, 71122, https://doi.org/10.1029/1999RG000065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and F. Wu, 1999: Cooling of the Arctic and Antarctic polar stratospheres due to ozone depletion. J. Climate, 12, 14671479, https://doi.org/10.1175/1520-0442(1999)012<1467:COTAAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., R. R. Garcia, and F. Wu, 2002: Time-dependent upwelling in the tropical lower stratosphere estimated from the zonal-mean momentum budget. J. Atmos. Sci., 59, 21412152, https://doi.org/10.1175/1520-0469(2002)059<2141:TDUITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., M. Park, F. Wu, and N. Livesey, 2007a: A large annual cycle in ozone above the tropical tropopause linked to the Brewer–Dobson circulation. J. Atmos. Sci., 64, 44794488, https://doi.org/10.1175/2007JAS2409.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., F. Wu, and P. Forster, 2007b: The extratropical tropopause inversion layer: Global observations with GPS data, and a radiative forcing mechanism. J. Atmos. Sci., 64, 44894496, https://doi.org/10.1175/2007JAS2412.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rieder, H. E., G. Chiodo, J. Fritzer, C. Wienerroither, and L. M. Polvani, 2019: Is interactive ozone chemistry important to represent polar cap stratospheric temperature variability in Earth-System Models? Environ. Res. Lett., 14, 044026, https://doi.org/10.1088/1748-9326/ab07ff.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shine, K. P., and Coauthors, 2003: A comparison of model-simulated trends in stratospheric temperatures. Quart. J. Roy. Meteor. Soc., 129, 15651588, https://doi.org/10.1256/qj.02.186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A., S. Uppala, D. Dee, and S. Kobayashi, 2007: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35, https://www.ecmwf.int/sites/default/files/elibrary/2007/17713-era-interim-new-ecmwf-reanalysis-products-1989-onwards.pdf.

  • Smith, K. L., R. Neely, D. Marsh, and L. M. Polvani, 2014: The Specified Chemistry Whole Atmosphere Community Climate Model (SC-WACCM). J. Adv. Model. Earth Syst., 6, 883901, https://doi.org/10.1002/2014MS000346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stone, K. A., S. Solomon, D. E. Kinnison, C. F. Baggett, and E. A. Barnes, 2019: Prediction of Northern Hemisphere regional surface temperatures using stratospheric ozone information. J. Geophys. Res. Atmos., 124, 59225933, https://doi.org/10.1029/2018JD029626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895899, https://doi.org/10.1126/science.1069270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ueyama, R., and J. M. Wallace, 2010: To what extent does high-latitude wave forcing drive tropical upwelling in the Brewer–Dobson circulation? J. Atmos. Sci., 67, 12321246, https://doi.org/10.1175/2009JAS3216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., W. J. Randel, S. Pawson, P. A. Newman, and E. R. Nash, 1999: Persistence of the lower stratospheric polar vortices. J. Geophys. Res., 104, 27 19127 201, https://doi.org/10.1029/1999JD900795.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yulaeva, E., J. R. Holton, and J. M. Wallace, 1994: On the cause of the annual cycle in tropical lower-stratospheric temperatures. J. Atmos. Sci., 51, 169174, https://doi.org/10.1175/1520-0469(1994)051<0169:OTCOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 55 55 35
Full Text Views 3 3 0
PDF Downloads 3 3 0

The Key Role of Coupled Chemistry–Climate Interactions in Tropical Stratospheric Temperature Variability

View More View Less
  • 1 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
  • 2 Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
  • 3 School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea
© Get Permissions
Restricted access

Abstract

The purpose of this study is to quantify the effects of coupled chemistry–climate interactions on the amplitude and structure of stratospheric temperature variability. To do so, the authors examine two simulations run on version 4 of the Whole Atmosphere Coupled Climate Model (WACCM): a “free-running” simulation that includes fully coupled chemistry–climate interactions and a “specified chemistry” version of the model forced with prescribed climatological-mean chemical composition. The results indicate that the inclusion of coupled chemistry–climate interactions increases the internal variability of temperature by a factor of ~2 in the lower tropical stratosphere and—to a lesser extent—in the Southern Hemisphere polar stratosphere. The increased temperature variability in the lower tropical stratosphere is associated with dynamically driven ozone–temperature feedbacks that are only included in the coupled chemistry simulation. The results highlight the fundamental role of two-way feedbacks between the atmospheric circulation and chemistry in driving climate variability in the lower stratosphere.

Corresponding author: Simchan Yook, simchan.yook@colostate.edu

Abstract

The purpose of this study is to quantify the effects of coupled chemistry–climate interactions on the amplitude and structure of stratospheric temperature variability. To do so, the authors examine two simulations run on version 4 of the Whole Atmosphere Coupled Climate Model (WACCM): a “free-running” simulation that includes fully coupled chemistry–climate interactions and a “specified chemistry” version of the model forced with prescribed climatological-mean chemical composition. The results indicate that the inclusion of coupled chemistry–climate interactions increases the internal variability of temperature by a factor of ~2 in the lower tropical stratosphere and—to a lesser extent—in the Southern Hemisphere polar stratosphere. The increased temperature variability in the lower tropical stratosphere is associated with dynamically driven ozone–temperature feedbacks that are only included in the coupled chemistry simulation. The results highlight the fundamental role of two-way feedbacks between the atmospheric circulation and chemistry in driving climate variability in the lower stratosphere.

Corresponding author: Simchan Yook, simchan.yook@colostate.edu
Save