• Adames, A. F., and Y. Ming, 2018a: Moisture and moist static energy budgets of South Asian monsoon low pressure systems in GFDL AM4.0. J. Atmos. Sci., 75, 21072123, https://doi.org/10.1175/JAS-D-17-0309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adames, A. F., and Y. Ming, 2018b: Interactions between water vapor and potential vorticity in synoptic-scale monsoonal disturbances: Moisture vortex instability. J. Atmos. Sci., 75, 20832106, https://doi.org/10.1175/JAS-D-17-0310.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adcroft, A., and Coauthors, 2019: The GFDL Global Ocean and Sea Ice Model OM4.0: Model description and simulation features. J. Adv. Model. Earth Syst., 11, 31673211, https://doi.org/10.1029/2019MS001726.

    • Search Google Scholar
    • Export Citation
  • Ajayamohan, R. S., W. J. Merryfield, and V. V. Kharin, 2010: Increasing trend of synoptic activity and its relationship with extreme rain events over central India. J. Climate, 23, 10041013, https://doi.org/10.1175/2009JCLI2918.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, S. K., Y. Ming, and A. F. Adames, 2020: Monsoon low pressure system like variability in an idealized moist model. J. Climate, 33, 20512074, https://doi.org/10.1175/JCLI-D-19-0289.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, N. Y., and W. R. Boos, 2014: Has the number of Indian summer monsoon depressions decreased over the last 30 years? Geophys. Res. Lett., 41, 78467853, https://doi.org/10.1002/2014GL061895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y., and D. R. Sikka, 2006: Synoptic systems and weather. The Asian Monsoon, Springer, 131–201.

    • Crossref
    • Export Citation
  • Ditchek, S. D., W. R. Boos, S. J. Camargo, and M. K. Tippett, 2016: A genesis index for monsoon disturbances. J. Climate, 29, 51895203, https://doi.org/10.1175/JCLI-D-15-0704.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, W. H., Y. L. Lin, J. S. Wright, Y. Y. Xie, F. H. Xu, W. Q. Xu, and Y. Wang, 2017: Indian monsoon low-pressure systems feed up-and-over moisture transport to the southwestern Tibetan Plateau. J. Geophys. Res. Atmos., 122, 12 14012 151, https://doi.org/10.1002/2017JD027296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, W. H., and Coauthors, 2018: Connections between a late summer snowstorm over the southwestern Tibetan Plateau and a concurrent Indian monsoon low-pressure system. J. Geophys. Res. Atmos., 123, 13 67613 691, https://doi.org/10.1029/2018JD029710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and Coauthors, 2019: Structure and performance of GFDL’s CM4.0 climate model. J. Adv. Model. Earth Syst., 11, 36913727, https://doi.org/10.1029/2019MS001829.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650, https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, K. M. R., and A. G. Turner, 2017: The effect of horizontal resolution on Indian monsoon depressions in the Met Office NWP model. Quart. J. Roy. Meteor. Soc., 143, 17561771, https://doi.org/10.1002/qj.3030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, K. M. R., and J. K. Fletcher, 2019: The relationship between Indian monsoon rainfall and low-pressure systems. Climate Dyn., 53, 18591871, https://doi.org/10.1007/s00382-019-04744-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, K. M. R., A. G. Turner, P. M. Inness, D. E. Parker, and R. C. Levine, 2016a: On the structure and dynamics of Indian monsoon depressions. Mon. Wea. Rev., 144, 33913416, https://doi.org/10.1175/MWR-D-15-0138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, K. M. R., A. G. Turner, and D. E. Parker, 2016b: The spatiotemporal structure of precipitation in Indian monsoon depressions. Quart. J. Roy. Meteor. Soc., 142, 31953210, https://doi.org/10.1002/qj.2901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurley, J. V., and W. R. Boos, 2015: A global climatology of monsoon low-pressure systems. Quart. J. Roy. Meteor. Soc., 141, 10491064, https://doi.org/10.1002/qj.2447.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayanthi, N., M. Rajeevan, A. Srivastava, D. Sunita, S. K. Roy Bhowmik, and H. Hatwar, 2006: Monsoon 2006: A report. IMD Meteorology Monograph/Synoptic Meteorology 4/2006, 103 pp.

  • Krishnamurthy, V., and R. S. Ajayamohan, 2010: Composite structure of monsoon low pressure systems and its relation to Indian rainfall. J. Climate, 23, 42854305, https://doi.org/10.1175/2010JCLI2953.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T., J. Molinari, H. Pan, and V. Wong, 1977: Downstream amplification and formation of monsoon disturbances. Mon. Wea. Rev., 105, 12811297, https://doi.org/10.1175/1520-0493(1977)105<1281:DAAFOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnan, R., D. C. Ayantika, V. Kumar, and S. Pokhrel, 2011: The long-lived monsoon depressions of 2006 and their linkage with the Indian Ocean Dipole. Int. J. Climatol., 31, 13341352, https://doi.org/10.1002/joc.2156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N. C., and M. J. Nath, 2003: Atmosphere–ocean variations in the Indo-Pacific sector during ENSO episodes. J. Climate, 16, 320, https://doi.org/10.1175/1520-0442(2003)016<0003:AOVITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mooley, D. A., and J. Shukla, 1988: Characteristics of the westward-moving summer monsoon low pressure systems over the Indian region and their relationship with the monsoon rainfall. University of Maryland, Center for Ocean–Land–Atmosphere Interactions, 47 pp.

  • Murakami, H., M. Sugi, and A. Kitoh, 2013: Future changes in tropical cyclone activity in the North Indian Ocean projected by high-resolution MRI-AGCMs. Climate Dyn., 40, 19491968, https://doi.org/10.1007/s00382-012-1407-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, B. C., and Coauthors, 2016: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev., 9, 34613482, https://doi.org/10.5194/gmd-9-3461-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prajeesh, A. G., K. Ashok, and D. V. B. Rao, 2013: Falling monsoon depression frequency: A Gray-Sikka conditions perspective. Sci. Rep., 3, 2989, https://doi.org/10.1038/SREP02989.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Praveen, V., S. Sandeep, and R. S. Ajayamohan, 2015: On the relationship between mean monsoon precipitation and low pressure systems in climate model simulations. J. Climate, 28, 53055324, https://doi.org/10.1175/JCLI-D-14-00415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rastogi, D., M. Ashfaq, L. R. Leung, S. Ghosh, A. Saha, K. Hodges, and K. Evans, 2018: Characteristics of Bay of Bengal monsoon depressions in the 21st century. Geophys. Res. Lett., 45, 66376645, https://doi.org/10.1029/2018GL078756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, K., F. Sanders, and J. Shukla, 1981: Westward propagating predecessors of monsoon depressions. Mon. Wea. Rev., 109, 330343, https://doi.org/10.1175/1520-0493(1981)109<0330:WPPOMD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sandeep, S., R. S. Ajayamohan, W. R. Boos, T. P. Sabin, and V. Praveen, 2018: Decline and poleward shift in Indian summer monsoon synoptic activity in a warming climate. Proc. Natl. Acad. Sci. USA, 115, 26812686, https://doi.org/10.1073/pnas.1709031115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and I. M. Held, 1984: The vorticity balance in the tropical upper troposphere of a general circulation model. J. Atmos. Sci., 41, 768778, https://doi.org/10.1175/1520-0469(1984)041<0768:TVBITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sikka, D. R., 1977: Some aspects of the life history, structure and movement of monsoon depressions. Pure Appl. Geophys., 115, 15011529, https://doi.org/10.1007/BF00874421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sikka, D. R., 2006: A Study on the Monsoon Low Pressure Systems over the Indian Region and Their Relationship with Drought and Excess Monsoon Seasonal Rainfall. Center for Ocean–Land–Atmosphere Studies, Center for the Application of Research on the Environment, 61 pp.

  • Sooraj, K. P., P. Terray, and M. Mujumdar, 2015: Global warming and the weakening of the Asian summer monsoon circulation: assessments from the CMIP5 models. Climate Dyn., 45, 233252, https://doi.org/10.1007/s00382-014-2257-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stowasser, M., H. Annamalai, and J. Hafner, 2009: Response of the South Asian summer monsoon to global warming: Mean and synoptic systems. J. Climate, 22, 10141036, https://doi.org/10.1175/2008JCLI2218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuleya, R. E., M. Bender, T. R. Knutson, J. J. Sirutis, B. Thomas, and I. Ginis, 2016: Impact of upper-tropospheric temperature anomalies and vertical wind shear on tropical cyclone evolution using an idealized version of the operational GFDL hurricane model. J. Atmos. Sci., 73, 38033820, https://doi.org/10.1175/JAS-D-16-0045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, A. G., and H. Annamalai, 2012: Climate change and the South Asian summer monsoon. Nat. Climate Change, 2, 587595, https://doi.org/10.1038/nclimate1495.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vishnu, S., P. A. Francis, S. S. C. Shenoi, and S. S. V. S. Ramakrishna, 2016: On the decreasing trend of the number of monsoon depressions in the Bay of Bengal. Environ. Res. Lett., 11, 014011, https://doi.org/10.1088/1748-9326/11/1/014011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2016: “The stippling shows statistically significant grid points”: How research results are routinely overstated and overinterpreted, and what to do about it. Bull. Amer. Meteor. Soc., 97, 22632273, https://doi.org/10.1175/BAMS-D-15-00267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoon, J.-H., and W.-R. Huang, 2012: Indian monsoon depression: Climatology and variability. Modern Climatology, S.-Y. Wang, Ed., InTech, 4572.

  • Zhao, M., I. M. Held, S. J. Lin, and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 66536678, https://doi.org/10.1175/2009JCLI3049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., and Coauthors, 2018a: The GFDL global atmosphere and land model AM4.0/LM4.0:1. Simulation characteristics with prescribed SSTs. J. Adv. Model. Earth Syst., 10, 691734, https://doi.org/10.1002/2017MS001208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., and Coauthors, 2018b: The GFDL global atmosphere and land model AM4.0/LM4.0:2. Model description, sensitivity studies, and tuning strategies. J. Adv. Model. Earth Syst., 10, 735769, https://doi.org/10.1002/2017MS001209.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 83 83 35
Full Text Views 78 78 37
PDF Downloads 20 20 7

Projected Changes in South Asian Monsoon Low Pressure Systems

View More View Less
  • 1 Geophysical Fluid Dynamics Laboratory/NOAA, Princeton, New Jersey, and Cooperative Programs for the Advancement of Earth System Science, University Corporation for Atmospheric Research, Boulder, Colorado
  • 2 Geophysical Fluid Dynamics Laboratory/NOAA, Princeton, New Jersey
© Get Permissions
Restricted access

Abstract

Monsoon low pressure systems (MLPSs) are among the most important synoptic-scale disturbances of the South Asian summer monsoon. Potential changes in their characteristics in a warmer climate would have broad societal impacts. Yet, the findings from a few existing studies are inconclusive. We use the Geophysical Fluid Dynamics Laboratory (GFDL) coupled climate model CM4.0 to examine the projected changes in the simulated MLPS activity under a future emission scenario. It is shown that CM4.0 can skillfully simulate the number, genesis location, intensity, and lifetime of MLPSs. Global warming gives rise to a significant decrease in MLPS activity. An analysis of several large-scale environmental variables, both dynamic and thermodynamic, suggests that the decrease in MLPS activity can be attributed mainly to a reduction in low-level relative vorticity over the core genesis region. The decreased vorticity is consistent with weaker large-scale ascent, which leads to less vorticity production through the stretching term in the vorticity equation. Assuming a fixed radius of influence, the projected reduction in MLPSs would significantly lower the associated precipitation over north-central India, despite an overall increase in mean precipitation.

Denotes content that is immediately available upon publication as open access.

Corresponding author: Wenhao Dong, wenhao.dong@noaa.gov

Abstract

Monsoon low pressure systems (MLPSs) are among the most important synoptic-scale disturbances of the South Asian summer monsoon. Potential changes in their characteristics in a warmer climate would have broad societal impacts. Yet, the findings from a few existing studies are inconclusive. We use the Geophysical Fluid Dynamics Laboratory (GFDL) coupled climate model CM4.0 to examine the projected changes in the simulated MLPS activity under a future emission scenario. It is shown that CM4.0 can skillfully simulate the number, genesis location, intensity, and lifetime of MLPSs. Global warming gives rise to a significant decrease in MLPS activity. An analysis of several large-scale environmental variables, both dynamic and thermodynamic, suggests that the decrease in MLPS activity can be attributed mainly to a reduction in low-level relative vorticity over the core genesis region. The decreased vorticity is consistent with weaker large-scale ascent, which leads to less vorticity production through the stretching term in the vorticity equation. Assuming a fixed radius of influence, the projected reduction in MLPSs would significantly lower the associated precipitation over north-central India, despite an overall increase in mean precipitation.

Denotes content that is immediately available upon publication as open access.

Corresponding author: Wenhao Dong, wenhao.dong@noaa.gov
Save