• Adam, O., T. Schneider, F. Brient, and T. Bischoff, 2016: Relation of the double-ITCZ bias to the atmospheric energy budget in climate models. Geophys. Res. Lett., 43, 76707677, https://doi.org/10.1002/2016GL069465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adam, O., T. Schneider, and F. Brient, 2018: Regional and seasonal variations of the double-ITCZ bias in CMIP5 models. Climate Dyn., 51, 101117, https://doi.org/10.1007/s00382-017-3909-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Agudelo, J., P. A. Arias, S. C. Vieira, and J. A. Martínez, 2019: Influence of longer dry seasons in the southern Amazon on patterns of water vapor transport over northern South America and the Caribbean. Climate Dyn., 52, 26472665, https://doi.org/10.1007/s00382-018-4285-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boers, N., N. Marwan, H. M. J. Barbosa, and J. Kurths, 2017: A deforestation-induced tipping point for the South American monsoon system. Sci. Rep., 7, 41489, https://doi.org/10.1038/srep41489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boisier, J. P., P. Ciais, A. Ducharne, and M. Guimberteau, 2015: Projected strengthening of Amazonian dry season by constrained climate model simulations. Nat. Climate Change, 5, 656660, https://doi.org/10.1038/nclimate2658.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bombardi, R. J., A. E. Leila, and M. V. Carvalho, 2009: IPCC global coupled model simulations of the South America monsoon system. Climate Dyn., 33, 893916, https://doi.org/10.1007/s00382-008-0488-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carvalho, L. M. V., C. Jones, and B. Liebmann, 2002: Extreme precipitation events in southeastern South America and large-scale convective patterns in the South Atlantic convergence zone. J. Climate, 15, 23772394, https://doi.org/10.1175/1520-0442(2002)015<2377:EPEISS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carvalho, L. M. V., C. Jones, and B. Liebmann, 2004: The South Atlantic convergence zone: Intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J. Climate, 17, 88108, https://doi.org/10.1175/1520-0442(2004)017<0088:TSACZI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coelho, C. A., and Coauthors, 2016: The 2014 southeast Brazil austral summer drought: Regional scale mechanisms and teleconnections. Climate Dyn., 46, 37373752, https://doi.org/10.1007/s00382-015-2800-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collini, E. A., E. H. Berbery, V. R. Barros, and M. E. Pyle, 2008: How does soil moisture influence the early stages of the South American monsoon? J. Climate, 21, 195213, https://doi.org/10.1175/2007JCLI1846.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., J. E. Smerdon, R. Seager, and S. Coats, 2014: Global warming and 21st century drying. Climate Dyn., 43, 26072627, https://doi.org/10.1007/s00382-014-2075-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donat, M. G., A. L. Lowry, L. V. Alexander, P. A. O’Gorman, and N. Maher, 2016: More extreme precipitation in the world’s dry and wet regions. Nat. Climate Change, 6, 508513, https://doi.org/10.1038/nclimate2941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duffy, P. B., P. Brando, G. P. Asner, and C. B. Field, 2015: Projections of future meteorological drought and wet periods in the Amazon. Proc. Natl. Acad. Sci. USA, 112, 13 17213 177, https://doi.org/10.1073/pnas.1421010112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Endo, H., and A. Kitoh, 2014: Thermodynamic and dynamic effects on regional monsoon rainfall changes in a warmer climate. Geophys. Res. Lett., 41, 17041711, https://doi.org/10.1002/2013GL059158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldpausch, T. R., and Coauthors, 2016: Amazon forest response to repeated droughts. Global Biogeochem. Cycles, 30, 964982, https://doi.org/10.1002/2015GB005133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Figueroa, S. N., P. Satyamurty, and P. L. Da Silva Dias, 1995: Simulations of the summer circulation over the South American region with an eta coordinate model. J. Atmos. Sci., 52, 15731584, https://doi.org/10.1175/1520-0469(1995)052<1573:SOTSCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fleischer, K., and Coauthors, 2019: Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition. Nat. Geosci., 12, 736741, https://doi.org/10.1038/s41561-019-0404-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, R., and Coauthors, 2013: Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection. Proc. Natl. Acad. Sci. USA, 110, 18 11018 115, https://doi.org/10.1073/pnas.1302584110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Funk, C., and Coauthors, 2015: The Climate Hazards Infrared Precipitation with Stations—A new environmental record for monitoring extremes. Sci. Data, 2, 150066, https://doi.org/10.1038/sdata.2015.66.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gan, M. A., V. B. Rao, and M. C. L. Moscati, 2005: South American monsoon indices. Atmos. Sci. Lett., 6, 219223, https://doi.org/10.1002/asl.119.

  • Gandu, A. W., and P. L. Silva Dias, 1998: Impact of tropical heat sources on the South American tropospheric upper circulation and subsidence. J. Geophys. Res., 103, 60016015, https://doi.org/10.1029/97JD03114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimm, A. M., 2019: South American monsoon and its extremes. Tropical Extremes: Natural Variability and Trends, Elsevier, 51–93, https://doi.org/10.1016/B978-0-12-809248-4.00003-0.

    • Crossref
    • Export Citation
  • Hawcroft, M., J. M. Haywood, M. Collins, A. Jones, A. C. Jones, and G. Stephens, 2017: Southern Ocean albedo, inter-hemispheric energy transports and the double ITCZ: Global impacts of biases in a coupled model. Climate Dyn., 48, 22792295, https://doi.org/10.1007/s00382-016-3205-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haylock, M. R., and Coauthors, 2006: Trends in total and extreme South American rainfall in 1960–2000 and links with sea surface temperature. J. Climate, 19, 14901512, https://doi.org/10.1175/JCLI3695.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C., and L. M. V. Carvalho, 2013: Climate change in the South American monsoon system: Present climate and CMIP5 projections. J. Climate, 26, 66606678, https://doi.org/10.1175/JCLI-D-12-00412.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kotz, S., and S. Nadarajah, 2010: Generalized extreme value distributions. Extreme Value Distributions, Imperial College Press, 61–93, https://doi.org/10.1142/9781860944024_0002.

    • Crossref
    • Export Citation
  • Lehner, F., S. Coats, T. F. Stocker, A. G. Pendergrass, B. M. Sanderson, C. C. Raible, and J. E. Smerdon, 2017: Projected drought risk in 1.5°C and 2°C warmer climates. Geophys. Res. Lett., 44, 74197428, https://doi.org/10.1002/2017GL074117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levine, P. A., J. T. Randerson, Y. Chen, M. S. Pritchard, M. Xu, and F. M. Hoffman, 2019: Soil moisture variability intensifies and prolongs eastern Amazon temperature and carbon cycle response to El Niño–Southern Oscillation. J. Climate, 32, 12731292, https://doi.org/10.1175/JCLI-D-18-0150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, S. L., P. M. Brando, O. L. Phillips, G. M. F. van der Heijden, and D. Nepstad, 2011: The 2010 Amazon drought. Science, 331, 554, https://doi.org/10.1126/science.1200807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., and S.-P. Xie, 2014: Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ problems. J. Climate, 27, 17651780, https://doi.org/10.1175/JCLI-D-13-00337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., W. Dong, M. Zhang, Y. Xie, W. Xue, J. Huang, and Y. Luo, 2017: Causes of model dry and warm bias over central U.S. and impact on climate projections. Nat. Commun., 8, 881, https://doi.org/10.1038/s41467-017-01040-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahli, Y., and Coauthors, 2009: Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl. Acad. Sci. USA, 106, 20 61020 615, https://doi.org/10.1073/pnas.0804619106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., and Coauthors, 2012: Recent developments on the South American monsoon system. Int. J. Climatol., 32, 121, https://doi.org/10.1002/joc.2254.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., M. Valverde, and G. Obregon, 2013: Observed and projected changes in rainfall extremes in the metropolitan area of São Paulo. Climate Res., 57, 6172, https://doi.org/10.3354/cr01160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pascale, S., L. M. V. Carvalho, D. K. Adams, C. L. Castro, and I. F. A. Cavalcanti, 2019: Current and future variations of the monsoons of the Americas in a warming climate. Curr. Climate Change Rep., 5, 125144, https://doi.org/10.1007/s40641-019-00135-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, O. L., and Coauthors, 2009: Drought sensitivity of the Amazon rainforest. Science, 323, 13441347, https://doi.org/10.1126/science.1164033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raia, A., and I. F. A. Cavalcanti, 2008: The life cycle of the South American monsoon system. J. Climate, 21, 62276246, https://doi.org/10.1175/2008JCLI2249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, I., S. P. Xie, S. K. Behera, T. Doi, and Y. Masumoto, 2014: Equatorial Atlantic variability and its relation to mean state biases in CMIP5. Climate Dyn., 42, 171188, https://doi.org/10.1007/s00382-012-1624-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakaguchi, K., L. R. Leung, C. D. Burleyson, H. Xiao, and H. Wan, 2018: Role of troposphere–convection–land coupling in the southwestern Amazon precipitation bias of the Community Earth System Model version 1 (CESM1). J. Geophys. Res. Atmos., 123, 83748399, https://doi.org/10.1029/2018jd028999.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seth, A., S. A. Rauscher, M. Biasutti, A. Giannini, S. J. Camargo, and M. Rojas, 2013: CMIP5 projected changes in the annual cycle of precipitation in monsoon regions. J. Climate, 26, 73287351, https://doi.org/10.1175/JCLI-D-12-00726.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siongco, A. C., C. Hohenegger, and B. Stevens, 2015: The Atlantic ITCZ bias in CMIP5 models. Climate Dyn., 45, 11691180, https://doi.org/10.1007/s00382-014-2366-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skansi, M. M., and Coauthors, 2013: Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America. Global Planet. Change, 100, 295307, https://doi.org/10.1016/j.gloplacha.2012.11.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and C. J. Guillemot, 1995: Evaluation of the global atmospheric moisture budget as seen from analyses. J. Climate, 8, 22552272, https://doi.org/10.1175/1520-0442(1995)008<2255:EOTGAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vera, C., and Coauthors, 2006: Toward a unified view of the American monsoon systems. J. Climate, 19, 49775000, https://doi.org/10.1175/JCLI3896.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, J. S., R. Fu, J. R. Worden, S. Chakraborty, N. E. Clinton, C. Risi, Y. Sun, and L. Yin, 2017: Rainforest-initiated wet season onset over the southern Amazon. Proc. Natl. Acad. Sci., 114, 84818486, https://doi.org/10.1073/pnas.1621516114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, L., A. Wang, D. Wang, and H. Wang, 2019: Hot spots of climate extremes in the future. J. Geophys. Res. Atmos., 124, 30353049, https://doi.org/10.1029/2018jd029980.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., H. Tian, S. Pan, G. Chen, B. Zhang, and S. Dangal, 2018: Amazon drought and forest response: Largely reduced forest photosynthesis but slightly increased canopy greenness during the extreme drought of 2015/2016. Global Change Biol., 24, 19191934, https://doi.org/10.1111/gcb.14056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, X., P. E. Thornton, D. M. Ricciuto, and W. M. Post, 2014: The role of phosphorus dynamics in tropical forests—A modeling study using CLM-CNP. Biogeosciences, 11, 16671681, https://doi.org/10.5194/bg-11-1667-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, L., R. Fu, E. Shevliakova, and R. E. Dickinson, 2013: How well can CMIP5 simulate precipitation and its controlling processes over tropical South America? Climate Dyn., 41, 31273143, https://doi.org/10.1007/s00382-012-1582-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, J., and K. M. Lau, 1998: Does a monsoon climate exist over South America? J. Climate, 11, 10201040, https://doi.org/10.1175/1520-0442(1998)011<1020:DAMCEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 29 29 10
Full Text Views 5 5 1
PDF Downloads 12 12 4

Projected End-of-Century Changes in the South American Monsoon in the CESM Large Ensemble

View More View Less
  • 1 University of California, Irvine, Irvine, California
© Get Permissions
Restricted access

Abstract

Projected changes in the South American monsoon system by the end of the twenty-first century are analyzed using the Community Earth System Model Large Ensemble (CESM-LENS). The wet season is shorter in LENS when compared to observations, with the mean onset occurring 19 days later and the mean retreat date 21 days earlier in the season. Despite a precipitation bias, the seasonality of rainfall over South America is reproduced in LENS, as well as the main circulation features associated with the development of the South American monsoon. Both the onset and retreat of the wet season over South America are delayed in the future compared to current climate by 3 and 7 days, respectively, with a slightly longer wet season. Central and southeastern Brazil are projected to get wetter as a result of moisture convergence from the strengthening of the South Atlantic low-level jet and a weaker South Atlantic subtropical high. The Amazon is projected to get drier by the end of the century, negatively affecting rain forest productivity. During the wet season, an increase in the frequency and intensity of extreme precipitation events is found over most of South America, and especially over northeastern and southern Brazil and La Plata. Meanwhile, during the dry season an increase in the maximum number of consecutive dry days is found over northeastern Brazil and the northern Amazon.

Corresponding author: Ana Claudia Thome Sena, athomese@uci.edu

Abstract

Projected changes in the South American monsoon system by the end of the twenty-first century are analyzed using the Community Earth System Model Large Ensemble (CESM-LENS). The wet season is shorter in LENS when compared to observations, with the mean onset occurring 19 days later and the mean retreat date 21 days earlier in the season. Despite a precipitation bias, the seasonality of rainfall over South America is reproduced in LENS, as well as the main circulation features associated with the development of the South American monsoon. Both the onset and retreat of the wet season over South America are delayed in the future compared to current climate by 3 and 7 days, respectively, with a slightly longer wet season. Central and southeastern Brazil are projected to get wetter as a result of moisture convergence from the strengthening of the South Atlantic low-level jet and a weaker South Atlantic subtropical high. The Amazon is projected to get drier by the end of the century, negatively affecting rain forest productivity. During the wet season, an increase in the frequency and intensity of extreme precipitation events is found over most of South America, and especially over northeastern and southern Brazil and La Plata. Meanwhile, during the dry season an increase in the maximum number of consecutive dry days is found over northeastern Brazil and the northern Amazon.

Corresponding author: Ana Claudia Thome Sena, athomese@uci.edu
Save