• Abdillah, M. R., Y. Kanno, and T. Iwasaki, 2017: Tropical–extratropical interactions associated with East Asian cold air outbreaks. Part I: Interannual variability. J. Climate, 30, 29893007, https://doi.org/10.1175/JCLI-D-16-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, M., and J. M. Wallace, 2015: Cluster analysis of Northern Hemisphere wintertime 500-hPa flow regimes during 1920–2014. J. Atmos. Sci., 72, 35973608, https://doi.org/10.1175/JAS-D-15-0001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., 2013: Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes. Geophys. Res. Lett., 40, 47344739, https://doi.org/10.1002/grl.50880.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and L. M. Polvani, 2015: CMIP5 projections of Arctic amplification, of the North American/North Atlantic circulation, and of their relationship. J. Climate, 28, 52545271, https://doi.org/10.1175/JCLI-D-14-00589.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., E. Dunn-Sigouin, G. Masato, and T. Woollings, 2014: Exploring recent trends in Northern Hemisphere blocking. Geophys. Res. Lett., 41, 638644, https://doi.org/10.1002/2013GL058745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1985: High resolution rotated empirical orthogonal function analysis of Northern Hemisphere 700 mb heights for predictive purposes. Ninth Conf. on Probability and Statistics in Atmospheric Sciences, Virginia Beach, VA, Amer. Meteor. Soc., 290–297.

  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, G. D., and M. S. Halpert, 1995: Atlas of intraseasonal and interannual variability, 1986–1993. NOAA Atlas 12, Climate Prediction Center, NOAA/NWS/MNC. [Available from the Climate Prediction Center, 5200 Auth Road, Camp Springs, MD 20746.]

  • Cavalieri, D. J., and C. L. Parkinson, 1987: On the relationship between atmospheric circulation and fluctuations in the sea ice extents of the Bering and Okhotsk Seas. J. Geophys. Res., 92, 71417162, https://doi.org/10.1029/JC092iC07p07141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H. W., R. B. Alley, and F. Zhang, 2016: Interannual Arctic sea ice variability and associated winter weather patterns: A regional perspective for 1979–2014. J. Geophys. Res. Atmos., 121, 14 43314 455, https://doi.org/10.1002/2016JD024769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, https://doi.org/10.1038/ngeo2234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., C. L. Parkinson, R. Gersten, and L. Stock, 2008: Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett., 35, L01703, https://doi.org/10.1029/2007GL031972.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., D. Luo, M. Song, and J. Liu, 2019: Arctic amplification is caused by sea-ice loss under increasing CO2. Nat. Commun., 10, 121, https://doi.org/10.1038/s41467-018-07954-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., J. E. Walsh, and M. S. Timlin, 2000: Arctic sea ice variability in the context of recent atmospheric circulation trends. J. Climate, 13, 617633, https://doi.org/10.1175/1520-0442(2000)013<0617:ASIVIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fang, Z., and J. M. Wallace, 1998: North-Pacific sea ice and Kuroshio SST variability and its relation to the winter monsoon. Polar Meteor. Glaciol., 12, 5867.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett., 39, L06801, https://doi.org/10.1029/2012GL051000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francis, J. A., and S. J. Vavrus, 2015: Evidence for a wavier jet stream in response to rapid Arctic warming. Environ. Res. Lett., 10, 014005, https://doi.org/10.1088/1748-9326/10/1/014005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hassanzadeh, P., Z. Kuong, and B. F. Farrell, 2014: Responses of midlatitude blocks and wave amplitude to changes in the meridional temperature gradient in an idealized dry GCM. Geophys. Res. Lett., 41, 52235232, https://doi.org/10.1002/2014GL060764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, M. M., and C. M. Bitz, 2003: Polar amplification of climate change in coupled models. Climate Dyn., 21, 221232, https://doi.org/10.1007/s00382-003-0332-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Honda, M., K. Yamazaki, H. Nakamura, and K. Takeuchi, 1999: Dynamic and thermodynamic characteristics of atmospheric response to anomalous sea-ice extent in the Sea of Okhotsk. J. Climate, 12, 33473358, https://doi.org/10.1175/1520-0442(1999)012<3347:DATCOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Honda, M., J. Inoue, and S. Yamane, 2009: Influence of low Arctic sea ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett., 36, L08707, https://doi.org/10.1029/2008GL037079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horton, D. E., N. C. Johnson, D. Singh, D. L. Swain, B. Rajaratnam, and N. S. Diffenbaugh, 2015: Contribution of changes in atmospheric circulation patterns to extreme temperature trends. Nature, 522, 465469, https://doi.org/10.1038/nature14550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inoue, J., M. Hori, and K. Takaya, 2012: The role of Barents Sea ice in the wintertime cyclone track and emergence of a warm-Arctic cold-Siberian anomaly. J. Climate, 25, 25612568, https://doi.org/10.1175/JCLI-D-11-00449.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp.

  • Ishii, M., A. Shouji, S. Sugimoto, and T. Matsumoto, 2005: Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the KOBE collection. Int. J. Climatol., 25, 865879, https://doi.org/10.1002/joc.1169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iwasaki, T., T. Shoji, Y. Kanno, M. Sawada, M. Ujiie, and K. Takaya, 2014: Isentropic analysis of polar cold airmass streams in the Northern Hemispheric winter. J. Atmos. Sci., 71, 22302243, https://doi.org/10.1175/JAS-D-13-058.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., S. P. Xie, Y. Kosaka, and X. Li, 2018: Increasing occurrence of cold and warm extremes during the recent global warming slowdown. Nat. Commun., 9, 1724, https://doi.org/10.1038/s41467-018-04040-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaiser, H. F., 1958: The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23, 187200, https://doi.org/10.1007/BF02289233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaiser, H. F., 1959: Computer program for varimax rotation in factor analysis. Educ. Psychol. Meas., 19, 413420, https://doi.org/10.1177/001316445901900314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanno, Y., J. E. Walsh, and T. Iwasaki, 2017: Interannual variability of the North American cold air stream and associated synoptic circulations. J. Climate, 30, 95759590, https://doi.org/10.1175/JCLI-D-17-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, M.-Y., C.-C. Hong, and H.-H. Hsu, 2015: Compounding effects of warm sea surface temperature and reduced sea ice on the extreme circulation over the extratropical North Pacific and North America during the 2013–2014 boreal winter. Geophys. Res. Lett., 42, 16121618, https://doi.org/10.1002/2014GL062956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Linkin, M. E., and S. Nigam, 2008: The North Pacific Oscillation–west Pacific teleconnection pattern: Mature-phase structure and winter impacts. J. Climate, 21, 19791997, https://doi.org/10.1175/2007JCLI2048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., Z. Zhang, R. M. Horton, C. Wang, and X. Ren, 2007: Variability of North Pacific Sea ice and East Asia–North Pacific winter climate. J. Climate, 20, 19912001, https://doi.org/10.1175/JCLI4105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., J. A. Curry, H. Wang, M. Song, and R. M. Horton, 2012: Impact of declining Arctic sea ice on winter snowfall. Proc. Natl. Acad. Sci. USA, 109, 40744079, https://doi.org/10.1073/pnas.1114910109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, X., P. Chang, R. Saravanan, and R. Montuoro, 2015: Distant influence of Kuroshio eddies on North Pacific weather patterns? Sci. Rep., 5, 17785, https://doi.org/10.1038/srep17785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthewman, N. J., and G. Magnusdottir, 2011: Observed interaction between Pacific sea ice and the western Pacific pattern on intraseasonal time scales. J. Climate, 24, 50315042, https://doi.org/10.1175/2011JCLI4216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K., and R. E. Livezey, 1986: Tropical–extratropical geopotential height teleconnections during the Northern Hemisphere winter. Mon. Wea. Rev., 114, 24882515, https://doi.org/10.1175/1520-0493(1986)114<2488:TEGHTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, M., M. Watanabe, H. Shiogama, J. Inoue, and M. Kimoto, 2014: Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat. Geosci., 7, 869873, https://doi.org/10.1038/ngeo2277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, M., Y. Kosaka, M. Watanabe, H. Nakamura, and M. Kimoto, 2019: A reconciled estimate of the influence of Arctic sea-ice loss on recent Eurasian cooling. Nat. Climate Change, 9, 123129, https://doi.org/10.1038/s41558-018-0379-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanowatari, T., K. Sato, and J. Inoue, 2014: Predictability of the Barents Sea ice in early winter: Remote effects of oceanic and atmospheric thermal conditions from the North Atlantic. J. Climate, 27, 88848901, https://doi.org/10.1175/JCLI-D-14-00125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanowatari, T., J. Inoue, K. Sato, and T. Kikuchi, 2015: Summertime atmosphere–ocean preconditionings for the Bering Sea ice retreat and the following severe winters in North America. Environ. Res. Lett., 10, 094023, https://doi.org/10.1088/1748-9326/10/9/094023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niebauer, H. J., 1980: Sea ice and temperature variability in the eastern Bering Sea and the relation to atmospheric fluctuations. J. Geophys. Res., 85, 75077515, https://doi.org/10.1029/JC085iC12p07507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niebauer, H. J., 1998: Variability in Bering Sea ice cover as affected by a regime shift in the North Pacific in the period 1947–1996. J. Geophys. Res., 103, 27 71727 737, https://doi.org/10.1029/98JC02499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J. E., and C. H. Pease, 1982: Cyclone climatology of the Bering Sea and its relation to sea ice extent. Mon. Wea. Rev., 110, 513, https://doi.org/10.1175/1520-0493(1982)110<0005:CCOTBS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J. E., J. A. Francis, R. Hall, E. Hanna, S.-J. Kim, and T. Vihma, 2015: The melting Arctic and mid-latitude weather patterns: Are they connected? J. Climate, 28, 79177932, https://doi.org/10.1175/JCLI-D-14-00822.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perovich, D., and Coauthors, 2017: Sea ice cover [in “State of the Climate in 2016”]. Bull. Amer. Meteor. Soc., 98, S131S133.

  • Petoukhov, V., and V. A. Semenov, 2010: A link between reduced Barents–Kara Sea ice and cold winter extremes over northern continents. J. Geophys. Res., 115, 013568, https://doi.org/10.1029/2009JD013568.

    • Search Google Scholar
    • Export Citation
  • Polyakov, I., J. E. Walsh, and R. Kwok, 2012: Recent changes of Arctic multiyear sea ice coverage and the likely causes. Bull. Amer. Meteor. Soc., 93, 145151, https://doi.org/10.1175/BAMS-D-11-00070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richman, M. B., 1986: Rotation of principal components. J. Climatol., 6, 293335, https://doi.org/10.1002/joc.3370060305.

  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, Y. N., and S. Minobe, 2005: Seasonally dependent interannual variability of sea ice in the Bering Sea and its relation to atmospheric fluctuations. J. Geophys. Res., 110, C05011, https://doi.org/10.1029/2004JC002486.

    • Search Google Scholar
    • Export Citation
  • Sato, K., J. Inoue, and M. Watanabe, 2014: Influence of the Gulf Stream on the Barents Sea ice retreat and Eurasian coldness during early winter. Environ. Res. Lett., 9, 084009, https://doi.org/10.1088/1748-9326/9/8/084009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea-ice in recent Arctic temperature amplification. Nature, 464, 13341337, https://doi.org/10.1038/nature09051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2013: Exploring links between Arctic amplification and mid-latitude weather. Geophys. Res. Lett., 40, 959964, https://doi.org/10.1002/grl.50174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2014: Amplified mid-latitude planetary waves favour particular regional weather extremes. Nat. Climate Change, 4, 704709, https://doi.org/10.1038/nclimate2271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and J. A. Francis, 2006: The Arctic amplification debate. Climatic Change, 76, 241264, https://doi.org/10.1007/s10584-005-9017-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and R. G. Barry, 2011: Processes and impacts of Arctic amplification: A research synthesis. Global Planet. Change, 77, 8596, https://doi.org/10.1016/j.gloplacha.2011.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., A. P. Barrett, J. C. Stroeve, D. M. Kindig, and M. M. Holland, 2009: The emergence of surface-based Arctic amplification. Cryosphere, 3, 1119, https://doi.org/10.5194/tc-3-11-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., 2015: Comparing and contrasting the behaviour of Arctic and Antarctic sea ice over the 35 year period 1979–2013. Ann. Glaciol., 56, 1828, https://doi.org/10.3189/2015AoG69A909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J. C., V. Kattsov, A. Barrett, M. Serreze, T. Pavlova, M. Holland, and W. N. Meier, 2012: Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett., 39, L16502, https://doi.org/10.1029/2012GL052676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugimoto, S., and K. Hanawa, 2009: Decadal and interdecadal variations of the Aleutian Low activity and their relation to upper oceanic variations over the North Pacific. J. Meteor. Soc. Japan, 87, 601614, https://doi.org/10.2151/jmsj.87.601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugimoto, S., K. Aono, and S. Fukui, 2017: Local atmospheric response to warm mesoscale ocean eddies in the Kuroshio–Oyashio Confluence region. Sci. Rep., 7, 11871, https://doi.org/10.1038/s41598-017-12206-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tachibana, Y., K. K. Komatsu, V. A. Alexeev, L. Cai, and Y. Ando, 2019: Warm hole in Pacific Arctic sea ice cover forced mid-latitude Northern Hemisphere cooling during winter 2017–18. Sci. Rep., 9, 5567, https://doi.org/10.1038/s41598-019-41682-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 1997: A formulation of a wave activity flux of stationary Rossby waves on a zonal varying basic flow. Geophys. Res. Lett., 24, 29852988, https://doi.org/10.1029/97GL03094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, Q., X. Zhang, X. Yang, and J. A. Francis, 2013: Cold winter extremes in northern continents linked to Arctic sea ice loss. Environ. Res. Lett., 8, 014036, https://doi.org/10.1088/1748-9326/8/1/014036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300, https://doi.org/10.1029/98GL00950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 27712777, https://doi.org/10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. W. Hurrell, 1994: Decadal atmosphere–ocean variations in the Pacific. Climate Dyn., 9, 303319, https://doi.org/10.1007/BF00204745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ukita, J., M. Honda, H. Nakamura, Y. Tachibana, D. J. Cavalieri, C. L. Parkinson, H. Koide, and K. Yamamoto, 2007: Northern Hemisphere sea ice variability: Lag structure and its implications. Tellus, 59A, 261272, https://doi.org/10.1111/j.1600-0870.2006.00223.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vihma, T., 2014: Effects of Arctic sea ice decline on weather and climate: A review. Surv. Geophys., 35, 11751214, https://doi.org/10.1007/s10712-014-9284-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., I. M. Held, D. W. Thompson, K. E. Trenberth, and J. E. Walsh, 2014: Global warming and winter weather. Science, 343, 729730, https://doi.org/10.1126/science.343.6172.729.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., and C. M. Johnson, 1979: An analysis of Arctic sea ice fluctuations 1953–77. J. Phys. Oceanogr., 9, 580591, https://doi.org/10.1175/1520-0485(1979)009<0580:AAOASI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., and J. E. Sater, 1981: Monthly and seasonal variability in the ocean–ice–atmosphere systems of the North Pacific and the North Atlantic. J. Geophys. Res., 86, 74257445, https://doi.org/10.1029/JC086iC08p07425.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, M., and J. E. Overland, 2012: A sea ice free summer Arctic within 30 years: An update from CMIP5 models. Geophys. Res. Lett., 39, L18501, https://doi.org/10.1029/2012GL052868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and M. Kimoto, 2000: Atmosphere–ocean thermal coupling in the North Atlantic: A positive feedback. Quart. J. Roy. Meteor. Soc., 126, 33433369, https://doi.org/10.1002/qj.49712657017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and M. Kimoto, 2001: Corrigendum. Quart. J. Roy. Meteor. Soc., 127, 733734, https://doi.org/10.1002/qj.49712757223.

  • WMO, 2018: WMO statement on the state of the global climate in 2017. WMO-1212, 35 pp., https://public.wmo.int/en/resources/library/wmo-statement-state-of-global-climate-2017.

  • Yamaguchi, J., Y. Kanno, G. Chen, and T. Iwasaki, 2019: Cold air mass analysis of the record-breaking cold surge event over East Asia in January 2016. J. Meteor. Soc. Japan, 97, 275293, https://doi.org/10.2151/jmsj.2019-015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamamoto, K., Y. Tachibana, M. Honda, and J. Ukita, 2006: Intraseasonal relationship between the Northern Hemisphere sea ice variability and the North Atlantic Oscillation. Geophys. Res. Lett., 33, L14711, https://doi.org/10.1029/2006GL026286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., R. Woodgate, and R. Moritz, 2010: Sea ice response to atmospheric and oceanic forcing in the Bering Sea. J. Phys. Oceanogr., 40, 17291747, https://doi.org/10.1175/2010JPO4323.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., M. Wallace, and N. Iwasaka, 1996: Is climate variability over the North Pacific a linear response to ENSO? J. Climate, 9, 14681478, https://doi.org/10.1175/1520-0442(1996)009<1468:ICVOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuo, H., M. A. Balmaseda, K. Mogensen, and S. Tietsche, 2018: OCEAN5: The ECMWF Ocean Reanalysis System and its real-time analysis component. ECMWF Tech. Memo. 823, 44 pp.

All Time Past Year Past 30 Days
Abstract Views 125 125 25
Full Text Views 25 25 18
PDF Downloads 42 42 32

Severe Cold Winter in North America Linked to Bering Sea Ice Loss

View More View Less
  • 1 Department of Geophysics, Graduate School of Science, Tohoku University, Sendai, Japan
© Get Permissions
Restricted access

Abstract

North America experienced an intense cold wave with record low temperatures during the winter of 2017/18, at the time reaching the smallest rank of sea ice area (SIA) in the Bering Sea over the past four decades. Using observations, ocean reanalysis, and atmospheric reanalysis data for 39 winters (1979/80–2017/18), both the Bering SIA loss and cold winters in North America are linked robustly via sea level pressure variations over Alaska detected as a dominant mode, the Alaska Oscillation (ALO). The ALO differs from previously identified atmospheric teleconnection and climate patterns. In the positive ALO, the equatorward cold airflow through the Bering Strait increases, resulting in surface air cooling over the Bering Sea and an increase in Bering SIA, as well as surface warming (about 4 K for the winter mean) for North America in response to a decrease of equatorward cold airflow, and vice versa for negative phase. The northerly winds with the cold air over the Bering Sea result in substantial heat release from ocean to atmosphere over open water just south of the region covered by sea ice. Heating over the southern part of Bering Sea acts as a positive feedback for the positive ALO and its related large-scale atmospheric circulation in a linear baroclinic model experiment. Bering SIA shows no decreasing trend, but has remained small since 2015. CMIP6 climate models of the SSP5–8.5 scenario project a decrease of Bering SIA in the future climate. To explain severe cold winters in North America under global warming, it is necessary to get an understanding of climate systems with little or no sea ice.

Denotes content that is immediately available upon publication as open access.

Corresponding author: Shusaku Sugimoto, shusaku.sugimoto.d7@tohoku.ac.jp

Abstract

North America experienced an intense cold wave with record low temperatures during the winter of 2017/18, at the time reaching the smallest rank of sea ice area (SIA) in the Bering Sea over the past four decades. Using observations, ocean reanalysis, and atmospheric reanalysis data for 39 winters (1979/80–2017/18), both the Bering SIA loss and cold winters in North America are linked robustly via sea level pressure variations over Alaska detected as a dominant mode, the Alaska Oscillation (ALO). The ALO differs from previously identified atmospheric teleconnection and climate patterns. In the positive ALO, the equatorward cold airflow through the Bering Strait increases, resulting in surface air cooling over the Bering Sea and an increase in Bering SIA, as well as surface warming (about 4 K for the winter mean) for North America in response to a decrease of equatorward cold airflow, and vice versa for negative phase. The northerly winds with the cold air over the Bering Sea result in substantial heat release from ocean to atmosphere over open water just south of the region covered by sea ice. Heating over the southern part of Bering Sea acts as a positive feedback for the positive ALO and its related large-scale atmospheric circulation in a linear baroclinic model experiment. Bering SIA shows no decreasing trend, but has remained small since 2015. CMIP6 climate models of the SSP5–8.5 scenario project a decrease of Bering SIA in the future climate. To explain severe cold winters in North America under global warming, it is necessary to get an understanding of climate systems with little or no sea ice.

Denotes content that is immediately available upon publication as open access.

Corresponding author: Shusaku Sugimoto, shusaku.sugimoto.d7@tohoku.ac.jp
Save