• Biasutti, M., and A. H. Sobel, 2009: Delayed Sahel rainfall and global seasonal cycle in a warmer climate. Geophys. Res. Lett., 36, L23707, https://doi.org/10.1029/2009GL041303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., G. Bellon, D. Klocke, S. Sherwood, S. Fermepin, and S. Denvil, 2013: Robust direct effect of carbon dioxide on tropical circulation and regional precipitation. Nat. Geosci., 6, 447451, https://doi.org/10.1038/ngeo1799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chadwick, R., 2016: Which aspects of CO2 forcing and SST warming cause most uncertainty in projections of tropical rainfall change over land and ocean? J. Climate, 29, 24932509, https://doi.org/10.1175/JCLI-D-15-0777.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chadwick, R., I. Boutle, and G. Martin, 2013: Spatial patterns of precipitation change in CMIP5: Why the rich do not get richer in the tropics. J. Climate, 26, 38033822, https://doi.org/10.1175/JCLI-D-12-00543.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chadwick, R., P. Good, T. Andrews, and G. Martin, 2014: Surface warming patterns drive tropical rainfall pattern responses to CO2 forcing on all timescales. Geophys. Res. Lett., 41, 610615, https://doi.org/10.1002/2013GL058504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chadwick, R., D. Ackerley, T. Ogura, and D. Dommenget, 2019: Separating the influences of land warming, the direct CO2 effect, the plant physiological effect, and SST warming on regional precipitation changes. J. Geophys. Res. Atmos., 124, 624640, https://doi.org/10.1029/2018jd029423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, D., and A. Dai, 2019: Precipitation characteristics in the Community Atmosphere Model and their dependence on model physics and resolution. J. Adv. Model. Earth Syst., 11, 23522374, https://doi.org/10.1029/2018MS001536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., and J. D. Neelin, 2004: Mechanisms of global warming impacts on regional tropical precipitation. J. Climate, 17, 26882701, https://doi.org/10.1175/1520-0442(2004)017<2688:MOGWIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., and C.-W. Lan, 2012: Changes in the annual range of precipitation under global warming. J. Climate, 25, 222235, https://doi.org/10.1175/JCLI-D-11-00097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., J. D. Neelin, C. A. Chen, and J. Y. Tu, 2009: Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming. J. Climate, 22, 19822005, https://doi.org/10.1175/2008JCLI2471.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Phillips, V. Bourdette, and H. Y. Teng, 2012: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546, https://doi.org/10.1007/s00382-010-0977-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dwyer, J. G., M. Biasutti, and A. H. Sobel, 2012: Projected changes in the seasonal cycle of surface temperature. J. Climate, 25, 63596374, https://doi.org/10.1175/JCLI-D-11-00741.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dwyer, J. G., M. Biasutti, and A. H. Sobel, 2014: The effect of greenhouse gas–induced changes in SST on the annual cycle of zonal mean tropical precipitation. J. Climate, 27, 45444565, https://doi.org/10.1175/JCLI-D-13-00216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emori, S., and S. J. Brown, 2005: Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys. Res. Lett., 32, L17706, https://doi.org/10.1029/2005GL023272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graham, N., and T. P. Barnett, 1987: Sea surface temperature, surface wind divergence, and convection over tropical oceans. Science, 238, 657659, https://doi.org/10.1126/science.238.4827.657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, J., B. J. Soden, and B. Kirtman, 2014: The robustness of the atmospheric circulation and precipitation response to future anthropogenic surface warming. Geophys. Res. Lett., 41, 26142622, https://doi.org/10.1002/2014GL059435.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, P., 2014: Regional response of annual-mean tropical rainfall to global warming. Atmos. Sci. Lett., 15, 103109, https://doi.org/10.1002/asl2.475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, P., S.-P. Xie, K. M. Hu, G. Huang, and R. H. Huang, 2013: Patterns of the seasonal response of tropical rainfall to global warming. Nat. Geosci., 6, 357361, https://doi.org/10.1038/ngeo1792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., and S.-P. Xie, 2010: Changes in the sea surface temperature threshold for tropical convection. Nat. Geosci., 3, 842845, https://doi.org/10.1038/ngeo1008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kent, C., R. Chadwick, and D. P. Rowell, 2015: Understanding uncertainties in future projections of seasonal tropical precipitation. J. Climate, 28, 43904413, https://doi.org/10.1175/JCLI-D-14-00613.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lan, C. W., M. H. Lo, C. A. Chen, and J. Y. Yu, 2019: The mechanisms behind changes in the seasonality of global precipitation found in reanalysis products and CMIP5 simulations. Climate Dyn., 53, 41734187, https://doi.org/10.1007/s00382-019-04781-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lazenby, M. J., M. C. Todd, R. Chadwick, and Y. Wang, 2018: Future precipitation projections over central and southern Africa and the adjacent Indian Ocean: What causes the changes and the uncertainty? J. Climate, 31, 48074826, https://doi.org/10.1175/JCLI-D-17-0311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., S.-P. Xie, Y. Du, and Y. Luo, 2016: Effects of excessive equatorial cold tongue bias on the projections of tropical Pacific climate change. Part I: The warming pattern in CMIP5 multi-model ensemble. Climate Dyn., 47, 38173831, https://doi.org/10.1007/s00382-016-3043-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., S.-P. Xie, C. He, and Z. Chen, 2017: Western Pacific emergent constraint lowers projected increase in Indian summer monsoon rainfall. Nat. Climate Change, 7, 708712, https://doi.org/10.1038/nclimate3387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, S.-M., S.-P. Xie, and W. Liu, 2016: Uncertainty in tropical rainfall projections: Atmospheric circulation effect and the ocean coupling. J. Climate, 29, 26712687, https://doi.org/10.1175/JCLI-D-15-0601.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, J., and S.-P. Xie, 2013: Regional patterns of sea surface temperature change: A source of uncertainty in future projections of precipitation and atmospheric circulation. J. Climate, 26, 24822501, https://doi.org/10.1175/JCLI-D-12-00283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, J., S.-P. Xie, and Y. Kosaka, 2012: Mechanisms for tropical tropospheric circulation change in response to global warming. J. Climate, 25, 29792994, https://doi.org/10.1175/JCLI-D-11-00048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and et al. , 2010: Description of the NCAR Community Atmosphere Model (CAM 4.0). NCAR Tech. Note NCAR/TN-485+STR, 212 pp., www.cesm.ucar.edu/models/ccsm4.0/cam/docs/description/cam4_desc.pdf.

  • Rowell, D. P., 2012: Sources of uncertainty in future changes in local precipitation. Climate Dyn., 39, 19291950, https://doi.org/10.1007/s00382-011-1210-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, and G. A. Vecchi, 2010: Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Climate, 23, 46514668, https://doi.org/10.1175/2010JCLI3655.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., M. Cane, N. Henderson, D.-E. Lee, R. Abernathey, and H. Zhang, 2019: Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nat. Climate Change, 9, 517522, https://doi.org/10.1038/s41558-019-0505-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seth, A., S. A. Rauscher, M. Rojas, A. Giannini, and S. J. Camargo, 2011: Enhanced spring convective barrier for monsoons in a warmer world? Climatic Change, 104, 403414, https://doi.org/10.1007/s10584-010-9973-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and S. J. Camargo, 2011: Projected future changes in tropical summer climate. J. Climate, 24, 473487, https://doi.org/10.1175/2010JCLI3748.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, F., L. R. Leung, J. Lu, and L. Dong, 2018: Seasonally dependent responses of subtropical highs and tropical rainfall to anthropogenic warming. Nat. Climate Change, 8, 787792, https://doi.org/10.1038/s41558-018-0244-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., S.-P. Xie, C. Deser, Y. Kosaka, and Y. M. Okumura, 2012: Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nature, 491, 439443, https://doi.org/10.1038/nature11576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and C. J. Guillemot, 1995: Evaluation of the global atmospheric moisture budget as seen from analyses. J. Climate, 8, 22552272, https://doi.org/10.1175/1520-0442(1995)008<2255:EOTGAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340, https://doi.org/10.1175/JCLI4258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., B. J. Soden, A. T. Wittenberg, I. M. Held, A. Leetmaa, and M. J. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441, 7376, https://doi.org/10.1038/nature04744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wills, R. C., M. P. Byrne, and T. Schneider, 2016: Thermodynamic and dynamic controls on changes in the zonally anomalous hydrological cycle. Geophys. Res. Lett., 43, 46404649, https://doi.org/10.1002/2016GL068418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S., H.-Y. Ma, J. S. Boyle, S. A. Klein, and Y. Zhang, 2012: On the correspondence between short- and long-time-scale systematic errors in CAM4/CAM5 for the Year of Tropical Convection. J. Climate, 25, 79377955, https://doi.org/10.1175/JCLI-D-12-00134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and Z.-Q. Zhou, 2017: Seasonal modulations of El Niño–related atmospheric variability: Indo-western Pacific Ocean feedback. J. Climate, 30, 34613472, https://doi.org/10.1175/JCLI-D-16-0713.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., C. Deser, G. A. Vecchi, J. Ma, H. Y. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986, https://doi.org/10.1175/2009JCLI3329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and et al. , 2015: Towards predictive understanding of regional climate change. Nat. Climate Change, 5, 921930, https://doi.org/10.1038/nclimate2689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ying, J., P. Huang, T. Lian, and H. Tan, 2019: Understanding the effect of an excessive cold tongue bias on projecting the tropical Pacific SST warming pattern in CMIP5 models. Climate Dyn., 52, 18051818, https://doi.org/10.1007/s00382-018-4219-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Center general circulation model. Atmos.–Ocean, 33, 407446, https://doi.org/10.1080/07055900.1995.9649539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, W., S.-P. Xie, and D. Yang, 2019: Enhanced equatorial warming causes deep-tropical contraction and subtropical monsoon shift. Nat. Climate Change, 9, 834839, https://doi.org/10.1038/s41558-019-0603-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Z.-Q., and S.-P. Xie, 2015: Effects of climatological model biases on the projection of tropical climate change. J. Climate, 28, 99099917, https://doi.org/10.1175/JCLI-D-15-0243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Z.-Q., S.-P. Xie, G. J. Zhang, and W. Zhou, 2018: Evaluating AMIP skill in simulating interannual variability of summer rainfall over the Indo-western Pacific. J. Climate, 31, 22532265, https://doi.org/10.1175/JCLI-D-17-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 151 151 31
Full Text Views 43 43 2
PDF Downloads 58 58 3

Seasonal Dependency of Tropical Precipitation Change under Global Warming

View More View Less
  • 1 Physical Oceanography Laboratory, Institute for Advanced Ocean Studies, Ocean University of China and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
  • | 2 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
  • | 3 Physical Oceanography Laboratory, Institute for Advanced Ocean Studies, Ocean University of China and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
© Get Permissions
Restricted access

Abstract

Tropical precipitation change under global warming varies with season. The present study investigates the characteristics and cause of the seasonality in rainfall change. Diagnostically, tropical precipitation change is decomposed into thermodynamic and dynamic components. The thermodynamic component represents the wet-get-wetter effect and its seasonality is due mostly to that in the mean vertical velocity, especially in the monsoon regions. The dynamic component includes the warmer-get-wetter effect due to the spatial variations in sea surface temperature (SST) warming, while the seasonality is due to that of the climatological SST and can be largely reproduced by an atmospheric model forced with the monthly climatological SST plus the annual-mean SST warming pattern. In the eastern equatorial Pacific where the SST warming is locally enhanced; for example, rainfall increases only during the March–May season when the climatological SST is high enough for deep convection. To the extent that the seasonality of tropical precipitation change over oceans arises mostly from that of the climatological SST, the results support the notion that reducing model biases in climatology improves regional rainfall projections.

Corresponding author: Shang-Ping Xie, sxie@ucsd.edu

Abstract

Tropical precipitation change under global warming varies with season. The present study investigates the characteristics and cause of the seasonality in rainfall change. Diagnostically, tropical precipitation change is decomposed into thermodynamic and dynamic components. The thermodynamic component represents the wet-get-wetter effect and its seasonality is due mostly to that in the mean vertical velocity, especially in the monsoon regions. The dynamic component includes the warmer-get-wetter effect due to the spatial variations in sea surface temperature (SST) warming, while the seasonality is due to that of the climatological SST and can be largely reproduced by an atmospheric model forced with the monthly climatological SST plus the annual-mean SST warming pattern. In the eastern equatorial Pacific where the SST warming is locally enhanced; for example, rainfall increases only during the March–May season when the climatological SST is high enough for deep convection. To the extent that the seasonality of tropical precipitation change over oceans arises mostly from that of the climatological SST, the results support the notion that reducing model biases in climatology improves regional rainfall projections.

Corresponding author: Shang-Ping Xie, sxie@ucsd.edu
Save