• Allan, R. P., and B. J. Soden, 2008: Atmospheric warming and the amplification of precipitation extremes. Science, 321, 14811484, https://doi.org/10.1126/science.1160787.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Al-Rashed, M. F., and M. M. Sherif, 2000: Water resources in the GCC countries: An overview. Water Resour. Manage., 14, 5975, https://doi.org/10.1023/A:1008127027743.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ban, N., J. Schmidli, and C. Schär, 2014: Evaluation of the convection-resolving regional climate modeling approach in decade-long simulations. J. Geophys. Res. Atmos., 119, 78897907, https://doi.org/10.1002/2014JD021478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bender, M. A., T. R. Knutson, R. E. Tuleya, J. J. Sirutis, G. A. Vecchi, S. T. Garner, and I. M. Held, 2010: Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science, 327, 454458, https://doi.org/10.1126/science.1180568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruyère, C. L., J. M. Done, G. J. Holland, and S. Fredrick, 2014: Bias corrections of global models for regional climate simulations of high-impact weather. Climate Dyn., 43, 18471856, https://doi.org/10.1007/s00382-013-2011-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruyère, C. L., A. J. Monaghan, D. F. Steinhoff, and D. Yates, 2015: Bias-corrected CMIP5 CESM data in WRF/MPAS intermediate file format. NCAR/TN-515+STR, https://doi.org/10.5065/D6445JJ7.

    • Crossref
    • Export Citation
  • Chenoweth, J., P. Hadjinicolaou, A. Bruggeman, J. Lelieveld, Z. Levin, M. A. Lange, E. Xoplaki, and M. Hadjikakou, 2011: Impact of climate change on the water resources of the eastern Mediterranean and Middle East region: Modeled 21st century changes and implications. Water Resour. Res., 47, W06506, https://doi.org/10.1029/2010WR010269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., J. D. Neelin, C. A. Chen, and J. Y. Tu, 2009: Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming. J. Climate, 22, 19822005, https://doi.org/10.1175/2008JCLI2471.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colette, A., R. Vautard, and M. Vrac, 2012: Regional climate downscaling with prior statistical correction of the global climate forcing. Geophys. Res. Lett., 39, L13707, https://doi.org/10.1029/2012GL052258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., 2004: Sensitivity of orographic precipitation to changing ambient conditions and terrain geometries: An idealized modeling perspective. J. Atmos. Sci., 61, 588606, https://doi.org/10.1175/1520-0469(2004)061<0588:SOOPTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coppola, E., and Coauthors, 2018: A first-of-its-kind multi-model convection permitting ensemble for investigating convective phenomena over Europe and the Mediterranean. Climate Dyn., 55, 334, https://doi.org/10.1007/S00382-018-4521-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Done, J. M., G. J. Holland, C. L. Bruyère, L. R. Leung, and A. Suzuki-Parker, 2015: Modeling high-impact weather and climate: Lessons from a tropical cyclone perspective. Climatic Change, 129, 381395, https://doi.org/10.1007/s10584-013-0954-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hausfather, Z., and G. P. Peters, 2020: Emissions—The ‘business as usual’ story is misleading. Nature, 577, 618620, https://doi.org/10.1038/d41586-020-00177-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hemming, D., C. Buontempo, E. Burke, M. Collins, and N. Kaye, 2010: How uncertain are climate model projections of water availability indicators across the Middle East? Philos. Trans. Roy. Soc., A368, 51175135, https://doi.org/10.1098/rsta.2010.0174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iguchi, T., T. Kozu, R. Meneghini, J. Awaka, and K. I. Okamoto, 2000: Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor., 39, 20382052, https://doi.org/10.1175/1520-0450(2001)040<2038:RPAFTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ikeda, K., and Coauthors, 2010: Simulation of seasonal snowfall over Colorado. Atmos. Res., 97, 462477, https://doi.org/10.1016/j.atmosres.2010.04.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. T. F. Stocker et al., Eds., Cambridge University Press, 1535 pp.

  • Jing, X., B. Geerts, Y. Wang, and C. Liu, 2017: Evaluating seasonal orographic precipitation in the interior western United States using gauge data, gridded precipitation estimates, and a regional climate simulation. J. Hydrometeor., 18, 25412558, https://doi.org/10.1175/JHM-D-17-0056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jing, X., B. Geerts, Y. Wang, and C. Liu, 2018: Ambient factors controlling the wintertime precipitation distribution across mountain ranges in the interior western United States. Part I: Insights from regional climate simulations. J. Appl. Meteor. Climatol., 57, 19311954, https://doi.org/10.1175/JAMC-D-17-0291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jing, X., B. Geerts, Y. Wang, and C. Liu, 2019: Ambient factors controlling the wintertime precipitation distribution across mountain ranges in the interior western United States. Part II: Changes in orographic precipitation distribution in a pseudo global warming climate. J. Appl. Meteor. Climatol., 58, 695715, https://doi.org/10.1175/JAMC-D-18-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A. P., and Coauthors, 2015: Representation of microphysical processes in cloud-resolving models: Spectral (bin) microphysics versus bulk parameterization. Rev. Geophys., 53, 247322, https://doi.org/10.1002/2014RG000468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutti, R., and J. Sedláček, 2013: Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Climate Change, 3, 369373, https://doi.org/10.1038/nclimate1716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwarteng, A. Y., A. S. Dorvlo, and G. T. Vijaya Kumar, 2009: Analysis of a 27-year rainfall data (1977–2003) in the Sultanate of Oman. Int. J. Climatol., 29, 605617, https://doi.org/10.1002/joc.1727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laprise, R. R. D. E., and Coauthors, 2008: Challenging some tenets of regional climate modelling. Meteor. Atmos. Phys., 100, 322, https://doi.org/10.1007/s00703-008-0292-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levy, A. A., W. Ingram, M. Jenkinson, C. Huntingford, F. H. Lambert, and M. Allen, 2013: Can correcting feature location in simulated mean climate improve agreement on projected changes? Geophys. Res. Lett., 40, 354358, https://doi.org/10.1002/2012GL053964.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and Coauthors, 2017: Continental-scale convection-permitting modeling of the current and future climate of North America. Climate Dyn., 49, 7195, https://doi.org/10.1007/s00382-016-3327-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, C., and H. Kunstmann, 2012: The hydrological cycle in three state-of-the-art reanalyses: Intercomparison and performance analysis. J. Hydrometeor., 13, 13971420, https://doi.org/10.1175/JHM-D-11-088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luce, C. H., J. T. Abatzoglou, and Z. A. Holden, 2013: The missing mountain water: Slower westerlies decrease orographic enhancement in the Pacific Northwest USA. Science, 342, 13601364, https://doi.org/10.1126/science.1242335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–845.

  • Modarres, R., and A. Sarhadi, 2009: Rainfall trends analysis of Iran in the last half of the twentieth century. J. Geophys. Res., 114, D03101, https://doi.org/10.1029/2008JD010707.

    • Search Google Scholar
    • Export Citation
  • Monaghan, A. J., D. F. Steinhoff, C. L. Bruyere, and D. Yates, 2014: NCAR CESM global bias-corrected CMIP5 output to support WRF/MPAS research. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, accessed 2017, https://doi.org/10.5065/D6DJ5CN4.

    • Crossref
    • Export Citation
  • Moss, R. H., and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747756, https://doi.org/10.1038/nature08823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Musselman, K. N., M. P. Clark, C. Liu, K. Ikeda, and R. Rasmussen, 2017: Slower snowmelt in a warmer world. Nat. Climate Change, 7, 214219, https://doi.org/10.1038/nclimate3225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 14561475, https://doi.org/10.1175/1520-0442-16.10.1456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ouarda, T. B., C. Charron, K. N. Kumar, P. R. Marpu, H. Ghedira, A. Molini, and I. Khayal, 2014: Evolution of the rainfall regime in the United Arab Emirates. J. Hydrol., 514, 258270, https://doi.org/10.1016/j.jhydrol.2014.04.032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T., and B. Stevens, 2019: The scientific challenge of understanding and estimating climate change. Proc. Natl. Acad. Sci. USA, 116, 24 39024 395, https://doi.org/10.1073/pnas.1906691116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., D. B. Coleman, C. Deser, F. Lehner, N. Rosenbloom, and I. R. Simpson, 2019: Nonlinear response of extreme precipitation to warming in CESM1. Geophys. Res. Lett., 46, 10 55110 560, https://doi.org/10.1029/2019GL084826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pepin, N., and Coauthors, 2015: Elevation-dependent warming in mountain regions of the world. Nat. Climate Change, 5, 424430, https://doi.org/10.1038/nclimate2563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and Coauthors, 2015: A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys., 53, 323361, https://doi.org/10.1002/2014RG000475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., R. M. Rasmussen, K. Ikeda, C. Liu, M. P. Clark, and G. J. Holland, 2017: The future intensification of hourly precipitation extremes. Nat. Climate Change, 7, 4852, https://doi.org/10.1038/nclimate3168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., A. F. Prein, R. M. Rasmussen, K. Ikeda, and C. Liu, 2020: Changes in the convective population and thermodynamic environments in convection-permitting regional climate simulations over the United States. Climate Dyn., 55, 383408, https://doi.org/10.1007/s00382-017-4000-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2011: High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate. J. Climate, 24, 30153048, https://doi.org/10.1175/2010JCLI3985.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2014: Climate change impacts on the water balance of the Colorado headwaters: High-resolution regional climate model simulations. J. Hydrometeor., 15, 10911116, https://doi.org/10.1175/JHM-D-13-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riahi, K., and Coauthors, 2011: RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Climatic Change, 109, 3357, https://doi.org/10.1007/s10584-011-0149-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidli, J., and C. Frei, 2005: Trends of heavy precipitation and wet and dry spells in Switzerland during the 20th century. Int. J. Climatol., 25, 753771, https://doi.org/10.1002/joc.1179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze Jr., 2000: Comparison of radar data from the TRMM satellite and Kwajalein oceanic validation site. J. Appl. Meteor., 39, 21512164, https://doi.org/10.1175/1520-0450(2001)040<2151:CORDFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze Jr., 2003: Stratiform rain in the tropics as seen by the TRMM precipitation radar. J. Climate, 16, 17391756, https://doi.org/10.1175/1520-0442(2003)016<1739:SRITTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serra, C., M. D. Martínez, X. Lana, and A. Burgueño, 2014: European dry spell regimes (1951–2000): Clustering process and time trends. Atmos. Res., 144, 151174, https://doi.org/10.1016/j.atmosres.2013.05.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A., S. Uppala, D. Dee, and S. Kobayashi, 2006: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, 25–35, https://www.ecmwf.int/sites/default/files/elibrary/2006/14615-newsletter-no110-winter-200607.pdf.

  • Smith, R. B., and I. Barstad, 2004: A linear theory of orographic precipitation. J. Atmos. Sci., 61, 13771391, https://doi.org/10.1175/1520-0469(2004)061<1377:ALTOOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tripathi, O. P., and F. Dominguez, 2013: Effects of spatial resolution in the simulation of daily and subdaily precipitation in the southwestern US. J. Geophys. Res. Atmos., 118, 75917605, https://doi.org/10.1002/JGRD.50590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., B. Geerts, and C. Liu, 2018: A 30-year convection-permitting regional climate simulation over the interior western United States. Part I: Validation. Int. J. Climatol., 38, 36843704, https://doi.org/10.1002/joc.5527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wehbe, Y., D. Ghebreyesus, M. Temimi, A. Milewski, and A. Al Mandous, 2017: Assessment of the consistency among global precipitation products over the United Arab Emirates. J. Hydrol. Reg. Stud., 12, 122135, https://doi.org/10.1016/j.ejrh.2017.05.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wehbe, Y., M. Temimi, D. T. Ghebreyesus, A. Milewski, H. Norouzi, and E. Ibrahim, 2018: Consistency of precipitation products over the Arabian Peninsula and interactions with soil moisture and water storage. Hydrol. Sci. J., 63, 408425, https://doi.org/10.1080/02626667.2018.1431647.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wehbe, Y., and Coauthors, 2019: Analysis of an extreme weather event in a hyper-arid region using WRF-Hydro coupling, station, and satellite data. Nat. Hazards Earth Syst. Sci., 19, 11291149, https://doi.org/10.5194/nhess-19-1129-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, R. H., and R. Toumi, 2013: The limitations of bias correcting regional climate model inputs. Geophys. Res. Lett., 40, 29072912, https://doi.org/10.1002/grl.50612.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Z., and Z. L. Yang, 2015: A new dynamical downscaling approach with GCM bias corrections and spectral nudging. J. Geophys. Res. Atmos., 120, 30633084, https://doi.org/10.1002/2014JD022958.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., Z. Wang, and A. Heymsfield, 2018: On the freezing time of supercooled drops in developing convective clouds over tropical ocean. Atmos. Res., 211, 3037, https://doi.org/10.1016/j.atmosres.2018.04.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yun, Y., and Coauthors, 2020: Convection-permitting regional climate simulation of warm-season precipitation over Eastern China. Climate Dyn., 54, 14691489, https://doi.org/10.1007/s00382-019-05070-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., D. A. Stark, J. A. Crouch, M. Jordan Payne, and B. A. Colle, 2011: The impact of varying environmental conditions on the spatial and temporal patterns of orographic precipitation over the Pacific Northwest near Portland, Oregon. J. Hydrometeor., 12, 329351, https://doi.org/10.1175/2010JHM1239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., Y. Wang, K. Hamilton, and A. Lauer, 2016a: Dynamical downscaling of the climate for the Hawaiian Islands. Part I: Present day. J. Climate, 29, 30273048, https://doi.org/10.1175/JCLI-D-15-0432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., Y. Wang, K. Hamilton, and A. Lauer, 2016b: Dynamical downscaling of the climate for the Hawaiian Islands. Part II: Projection for the late twenty-first century. J. Climate, 29, 83338354, https://doi.org/10.1175/JCLI-D-16-0038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zittis, G., and Coauthors, 2017: The added value of convection permitting simulations of extreme precipitation events over the eastern Mediterranean. Atmos. Res., 191, 2033, https://doi.org/10.1016/j.atmosres.2017.03.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zittis, G., and Coauthors, 2020: 21st century projections of extreme precipitation indicators for Cyprus. Atmosphere, 11, 343, https://doi.org/10.3390/atmos11040343.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 77 77 19
Full Text Views 12 12 5
PDF Downloads 13 13 4

Convection-Permitting Regional Climate Simulations in the Arabian Gulf Region Using WRF Driven by Bias-Corrected GCM Data

View More View Less
  • 1 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Precision Regional Earth Modeling and Information Center, Nanjing University of Information Science and Technology, Nanjing, China
  • 2 Key Laboratory of Cloud and Fog Physical Environment of China Meteorological Administration, Beijing, China
  • 3 Hua Xin Chuang Zhi Sci. and Tech. LLC, Beijing, China
  • 4 National Center for Atmospheric Research, Boulder, Colorado
  • 5 Scripps Institution of Oceanography, University of California San Diego, San Diego, California
  • 6 University of Colorado, Boulder, Colorado
  • 7 Center for Prototype Climate Modeling, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
  • 8 Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, New York, New York
© Get Permissions
Restricted access

Abstract

The regional climate of the Arabian Gulf region is modeled using a set of simulations based on the Weather Research and Forecasting (WRF) Model, including a 30-yr benchmark simulation driven by reanalysis data, and two bias-corrected Community Earth System Model (CESM)-driven (BCD) WRF simulations for retrospective and future periods that both include 10-yr convection-permitting nested simulations. The modeled precipitation is cross-validated using Tropical Rainfall Measuring Mission data, rain gauge data, and the baseline dataset from the benchmark simulation. The changes in near-surface temperature, precipitation, and ambient conditions are investigated using the BCD WRF simulations. The results show that the BCD WRF simulation well captures the precipitation distribution, the precipitation variability, and the thermodynamic properties. In a warmer climate under the RCP8.5 scenario around the year 2070, the near-surface temperature warms by ~3°C. Precipitation increases over the Arabian Gulf, and decreases over most of the continental area, particularly over the Zagros Mountains. The wet index decreases while the maximum dry spell increases in most areas of the model domain. The future changes in precipitation are determined by both the thermodynamics and dynamics. The thermodynamic impact, which is controlled by the warming and moistening, results in more precipitation over the ocean but not over the land. The dynamic impact, which is controlled by changes in the large-scale circulation, results in decrease in precipitation over mountains. The simulations presented in this study provide a unique dataset to study the regional climate in the Arabian Gulf region for both retrospective and future climates.

Corresponding author: Lulin Xue, lulin.xue@gmail.com

Abstract

The regional climate of the Arabian Gulf region is modeled using a set of simulations based on the Weather Research and Forecasting (WRF) Model, including a 30-yr benchmark simulation driven by reanalysis data, and two bias-corrected Community Earth System Model (CESM)-driven (BCD) WRF simulations for retrospective and future periods that both include 10-yr convection-permitting nested simulations. The modeled precipitation is cross-validated using Tropical Rainfall Measuring Mission data, rain gauge data, and the baseline dataset from the benchmark simulation. The changes in near-surface temperature, precipitation, and ambient conditions are investigated using the BCD WRF simulations. The results show that the BCD WRF simulation well captures the precipitation distribution, the precipitation variability, and the thermodynamic properties. In a warmer climate under the RCP8.5 scenario around the year 2070, the near-surface temperature warms by ~3°C. Precipitation increases over the Arabian Gulf, and decreases over most of the continental area, particularly over the Zagros Mountains. The wet index decreases while the maximum dry spell increases in most areas of the model domain. The future changes in precipitation are determined by both the thermodynamics and dynamics. The thermodynamic impact, which is controlled by the warming and moistening, results in more precipitation over the ocean but not over the land. The dynamic impact, which is controlled by changes in the large-scale circulation, results in decrease in precipitation over mountains. The simulations presented in this study provide a unique dataset to study the regional climate in the Arabian Gulf region for both retrospective and future climates.

Corresponding author: Lulin Xue, lulin.xue@gmail.com
Save