• Anav, A., and et al. , 2013: Evaluating the land and ocean components of the global carbon cycle in the CMIP5 Earth system models. J. Climate, 26, 68016843, https://doi.org/10.1175/JCLI-D-12-00417.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, T., P. M. Forster, and J. M. Gregory, 2009: A surface energy perspective on climate change. J. Climate, 22, 25572570, https://doi.org/10.1175/2008JCLI2759.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, T., M. Doutriaux-Boucher, O. Boucher, and P. M. Forster, 2011: A regional and global analysis of carbon dioxide physiological forcing and its impact on climate. Climate Dyn., 36, 783792, https://doi.org/10.1007/s00382-010-0742-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, T., M. A. Ringer, M. Doutriaux-Boucher, M. J. Webb, and W. J. Collins, 2012: Sensitivity of an Earth system climate model to idealized radiative forcing. Geophys. Res. Lett., 39, L10702, https://doi.org/10.1029/2012GL051942.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, T., and et al. , 2019: Forcings, feedbacks, and climate sensitivity in HadGEM3-GC3.1 and UKESM1. J. Adv. Model. Earth Syst., 11, 43774394, https://doi.org/10.1029/2019MS001866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arora, V. K., and et al. , 2013: Carbon–concentration and carbon–climate feedbacks in CMIP5 Earth system models. J. Climate, 26, 52895314, https://doi.org/10.1175/JCLI-D-12-00494.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arora, V. K., and et al. , 2019: Carbon-concentration and carbon-climate feedbacks in CMIP6 models, and their comparison to CMIP5 models. Biogeosci. Discuss., https://doi.org/10.5194/bg-2019-473.

    • Search Google Scholar
    • Export Citation
  • Bala, G., K. Caldeira, A. Mirin, M. Wickett, C. Delire, and T. J. Phillips, 2006: Biogeophysical effects of CO2 fertilization on global climate. Tellus, 58B, 620627, https://doi.org/10.1111/j.1600-0889.2006.00210.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ball, J. T., I. E. Woodrow, and J. A. Berry, 1987: A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. Progress in Photosynthesis Research, J. Biggins, Ed., Springer, 221–224.

    • Crossref
    • Export Citation
  • Betts, R. A., 2000: Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature, 408, 187190, https://doi.org/10.1038/35041545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, R. A., P. M. Cox, S. E. Lee, and F. I. Woodward, 1997: Contrasting physiological and structural vegetation feedbacks in climate change simulations. Nature, 387, 796799, https://doi.org/10.1038/42924.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, R. A., and et al. , 2007: Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature, 448, 10371041, https://doi.org/10.1038/nature06045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 2008: Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320, 14441449, https://doi.org/10.1126/science.1155121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., and et al. , 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19, 34453482, https://doi.org/10.1175/JCLI3819.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., A. Jones, and R. A. Betts, 2009: Climate response to the physiological impact of carbon dioxide on plants in the Met Office Unified Model HadCM3. Climate Dyn., 32, 237249, https://doi.org/10.1007/s00382-008-0459-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., and et al. , 2013: Clouds and aerosols. Climatic Change 2013: The Physical Science Basis, T.F. Stocker et al., Eds., Cambridge University Press, 571–657.

  • Bounoua, L., and et al. , 1999: Interactions between vegetation and climate: Radiative and physiological effects of doubled atmospheric CO2. J. Climate, 12, 309324, https://doi.org/10.1175/1520-0442(1999)012<0309:IBVACR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., and P. A. O’Gorman, 2016: Understanding decreases in land relative humidity with global warming: Conceptual model and GCM simulations. J. Climate, 29, 90459061, https://doi.org/10.1175/JCLI-D-16-0351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., and P. A. O’Gorman, 2018: Trends in continental temperature and humidity directly linked to ocean warming. Proc. Natl. Acad. Sci. USA, 115, 48634868, https://doi.org/10.1073/pnas.1722312115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, L., G. Bala, K. Caldeira, R. Nemani, and G. Ban-Weiss, 2009: Climate response to physiological forcing of carbon dioxide simulated by the coupled Community Atmosphere Model (CAM3.1) and Community Land Model (CLM3.0). Geophys. Res. Lett., 36, L10402, https://doi.org/10.1029/2009GL037724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, L., G. Bala, K. Caldeira, R. Nemani, and G. Ban-Weiss, 2010: Importance of carbon dioxide physiological forcing to future climate change. Proc. Natl. Acad. Sci. USA, 107, 95139518, https://doi.org/10.1073/pnas.0913000107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chadwick, R., H. Douville, and C. B. Skinner, 2017: Timeslice experiments for understanding regional climate projections: Applications to the tropical hydrological cycle and European winter circulation. Climate Dyn., 49, 30113029, https://doi.org/10.1007/s00382-016-3488-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chadwick, R., D. Ackerley, T. Ogura, and D. Dommenget, 2019: Separating the influences of land warming, the direct CO2 effect, the plant physiological effect, and SST warming on regional precipitation changes. J. Geophys. Res. Atmos., 124, 624640, https://doi.org/10.1029/2018JD029423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collatz, G. J., L. Bounoua, S. O. Los, D. A. Randall, I. Y. Fung, and P. J. Sellers, 2000: A mechanism for the influence of vegetation on the response of the diurnal temperature range to changing climate. Geophys. Res. Lett., 27, 33813384, https://doi.org/10.1029/1999GL010947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, P. M., R. A. Betts, C. B. Bunton, R. L. H. Essery, P. R. Rowntree, and J. Smith, 1999: The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Climate Dyn., 15, 183203, https://doi.org/10.1007/s003820050276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Arellano, J. V.-G., C. C. van Heerwaarden, and J. Lelieveld, 2012: Modelled suppression of boundary-layer clouds by plants in a CO2-rich atmosphere. Nat. Geosci., 5, 701704, https://doi.org/10.1038/ngeo1554.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Kauwe, M. G., and et al. , 2013: Forest water use and water use efficiency at elevated CO2: A model–data intercomparison at two contrasting temperate forest FACE sites. Global Change Biol., 19, 17591779, https://doi.org/10.1111/gcb.12164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., and et al. , 2020: Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Climate Change, 10, 277286, https://doi.org/10.1038/s41558-020-0731-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Devaraju, N., G. Bala, and A. Modak, 2015: Effects of large-scale deforestation on precipitation in the monsoon regions: Remote versus local effects. Proc. Natl. Acad. Sci. USA, 112, 32573262, https://doi.org/10.1073/pnas.1423439112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Devaraju, N., N. de Noblet-Ducoudré, B. Quesada, and G. Bala, 2018: Quantifying the relative importance of direct and indirect biophysical effects of deforestation on surface temperature and teleconnections. J. Climate, 31, 38113829, https://doi.org/10.1175/JCLI-D-17-0563.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N. S., M. A. Snyder, and L. C. Sloan, 2004: Could CO2-induced land-cover feedbacks alter near-shore upwelling regimes? Proc. Natl. Acad. Sci. USA, 101, 2732, https://doi.org/10.1073/pnas.0305746101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B., J. M. Gregory, and R. T. Sutton, 2009: Understanding land–sea warming contrast in response to increasing greenhouse gases. Part I: Transient adjustment. J. Climate, 22, 30793097, https://doi.org/10.1175/2009JCLI2652.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohue, R. J., M. L. Roderick, T. R. McVicar, and G. D. Farquhar, 2013: Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environments. Geophys. Res. Lett., 40, 30313035, https://doi.org/10.1002/grl.50563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doutriaux-Boucher, M., M. J. Webb, J. M. Gregory, and O. Boucher, 2009: Carbon dioxide induced stomatal closure increases radiative forcing via a rapid reduction in low cloud. Geophys. Res. Lett., 36, L02703, https://doi.org/10.1029/2008GL036273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douville, H., S. Planton, J.-F. Royer, D. B. Stephenson, S. Tyteca, L. Kergoat, S. Lafont, and R. A. Betts, 2000: Importance of vegetation feedbacks in doubled-CO2 climate experiments. J. Geophys. Res. Atmos., 105, 14 84114 861, https://doi.org/10.1029/1999JD901086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, C. B., R. B. Jackson, and H. A. Mooney, 1995: Stomatal responses to increased CO2: Implications from the plant to the global scale. Plant Cell Environ., 18, 12141225, https://doi.org/10.1111/j.1365-3040.1995.tb00630.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fisher, R. A., and et al. , 2019: Parametric controls on vegetation responses to biogeochemical forcing in the CLM5. J. Adv. Model. Earth Syst., 11, 28792895, https://doi.org/10.1029/2+019MS001609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flynn, C. M., and T. Mauritsen, 2020: On the climate sensitivity and historical warming evolution in recent coupled model ensembles. Atmos. Chem. Phys., 20, 78297842, https://doi.org/10.5194/acp-20-7829-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedlingstein, P., and et al. , 2006: Climate–carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J. Climate, 19, 33373353, https://doi.org/10.1175/JCLI3800.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geoffroy, O., D. Saint-Martin, and A. Ribes, 2012: Quantifying the sources of spread in climate change experiments. Geophys. Res. Lett., 39, L24703, https://doi.org/10.1029/2012GL054172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and et al. , 2019: High climate sensitivity in the Community Earth System Model version 2 (CESM2). Geophys. Res. Lett., 46, 83298337, https://doi.org/10.1029/2019GL083978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golaz, J.-C., and et al. , 2019: The DOE E3SM coupled model version 1: Overview and evaluation at standard resolution. J. Adv. Model. Earth Syst., 11, 20892129, https://doi.org/10.1029/2018MS001603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, J. K., A. G. Konings, S. H. Alemohammad, J. Berry, D. Entekhabi, J. Kolassa, J.-E. Lee, and P. Gentine, 2017: Regionally strong feedbacks between the atmosphere and terrestrial biosphere. Nat. Geosci., 10, 410414, https://doi.org/10.1038/ngeo2957.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and P. M. Forster, 2008: Transient climate response estimated from radiative forcing and observed temperature change. J. Geophys. Res., 113, D23105, https://doi.org/10.1029/2008JD010405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and et al. , 2004: A new method for diagnosing radiative forcing and climate sensitivity. Geophys. Res. Lett., 31, L03205, https://doi.org/10.1029/2003GL018747.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., T. Andrews, and P. Good, 2015: The inconstancy of the transient climate response parameter under increasing CO2. Philos. Trans. Roy. Soc., 373, 20140417, https://doi.org/10.1098/rsta.2014.0417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grose, M. R., J. Gregory, R. Colman, and T. Andrews, 2018: What climate sensitivity index is most useful for projections? Geophys. Res. Lett., 45, 15591566, https://doi.org/10.1002/2017GL075742.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., and et al. , 2005: Efficacy of climate forcings. J. Geophys. Res., 110, D18104, https://doi.org/10.1029/2005JD005776.

  • Hense, I., I. Stemmler, and S. Sonntag, 2017: Ideas and perspectives: Climate-relevant marine biologically driven mechanisms in Earth system models. Biogeosciences, 14, 403413, https://doi.org/10.5194/bg-14-403-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hungate, B. A., M. Reichstein, P. Dijkstra, D. Johnson, G. Hymus, J. D. Tenhunen, C. R. Hinkle, and B. G. Drake, 2002: Evapotranspiration and soil water content in a scrub-oak woodland under carbon dioxide enrichment. Global Change Biol., 8, 289298, https://doi.org/10.1046/j.1365-2486.2002.00468.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C. D., and et al. , 2016: C4MIP—The Coupled Climate–Carbon Cycle Model Intercomparison Project: Experimental protocol for CMIP6. Geosci. Model Dev., 9, 28532880, https://doi.org/10.5194/gmd-9-2853-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joshi, M. M., J. M. Gregory, M. J. Webb, D. M. H. Sexton, and T. C. Johns, 2008: Mechanisms for the land/sea warming contrast exhibited by simulations of climate change. Climate Dyn., 30, 455465, https://doi.org/10.1007/s00382-007-0306-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keenan, T. F. and W. J. Riley, 2018: Greening of the land surface in the world’s cold regions consistent with recent warming. Nat. Climate Change, 8, 825828, https://doi.org/10.1038/s41558-018-0258-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kooperman, G. J., Y. Chen, F. M. Hoffman, C. D. Koven, K. Lindsay, M. S. Pritchard, A. L. S. Swann, and J. T. Randerson, 2018a: Forest response to rising CO2 drives zonally asymmetric rainfall change over tropical land. Nat. Climate Change, 8, 434440, https://doi.org/10.1038/s41558-018-0144-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kooperman, G. J., M. D. Fowler, F. M. Hoffman, C. D. Koven, K. Lindsay, M. S. Pritchard, A. L. S. Swann, and J. T. Randerson, 2018b: Plant physiological responses to rising CO2 modify simulated daily runoff intensity with implications for global-scale flood risk assessment. Geophys. Res. Lett., 45, 12 45712 466, https://doi.org/10.1029/2018GL079901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laguë, M. M., and A. L. S. Swann, 2016: Progressive midlatitude afforestation: Impacts on clouds, global energy transport, and precipitation. J. Climate, 29, 55615573, https://doi.org/10.1175/JCLI-D-15-0748.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laguë, M. M., G. B. Bonan, and A. L. S. Swann, 2019: Separating the impact of individual land surface properties on the terrestrial surface energy budget in both the coupled and uncoupled land–atmosphere system. J. Climate, 32, 57255744, https://doi.org/10.1175/JCLI-D-18-0812.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langenbrunner, B., M. S. Pritchard, G. J. Kooperman, and J. T. Randerson, 2019: Why does Amazon precipitation decrease when tropical forests respond to increasing CO2? Earth’s Future, 7, 450468, https://doi.org/10.1029/2018EF001026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leakey, A. D. B., E. A. Ainsworth, C. J. Bernacchi, A. Rogers, S. P. Long, and D. R. Ort, 2009: Elevated CO2 effects on plant carbon, nitrogen, and water relations: Six important lessons from FACE. J. Exp. Bot., 60, 28592876, https://doi.org/10.1093/jxb/erp096.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemordant, L., and P. Gentine, 2019: Vegetation response to rising CO2 impacts extreme temperatures. Geophys. Res. Lett., 46, 13831392, https://doi.org/10.1029/2018GL080238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemordant, L., P. Gentine, M. Stéfanon, P. Drobinski, and S. Fatichi, 2016: Modification of land–atmosphere interactions by CO2 effects: Implications for summer dryness and heat wave amplitude. Geophys. Res. Lett., 43, 10 24010 248, https://doi.org/10.1002/2016GL069896.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemordant, L., P. Gentine, A. S. Swann, B. I. Cook, and J. Scheff, 2018: Critical impact of vegetation physiology on the continental hydrologic cycle in response to increasing CO2. Proc. Natl. Acad. Sci. USA, 115, 40934098, https://doi.org/10.1073/pnas.1720712115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levis, S., J. A. Foley, and D. Pollard, 2000: Large-scale vegetation feedbacks on a doubled CO2 climate. J. Climate, 13, 13131325, https://doi.org/10.1175/1520-0442(2000)013<1313:LSVFOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lian, X., and et al. , 2018: Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nat. Climate Change, 8, 640646, https://doi.org/10.1038/s41558-018-0207-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-S., and et al. , 2015: Optimal stomatal behaviour around the world. Nat. Climate Change, 5, 459464, https://doi.org/10.1038/nclimate2550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lutsko, N. J., and M. Popp, 2019: Probing the sources of uncertainty in transient warming on different timescales. Geophys. Res. Lett., 46, 11 36711 377, https://doi.org/10.1029/2019GL084018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahowald, N., F. Lo, Y. Zheng, L. Harrison, C. Funk, D. Lombardozzi, and C. Goodale, 2016: Projections of leaf area index in Earth system models. Earth Syst. Dyn., 7, 211229, https://doi.org/10.5194/esd-7-211-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medlyn, B. E., and et al. , 2011: Reconciling the optimal and empirical approaches to modelling stomatal conductance. Global Change Biol., 17, 21342144, https://doi.org/10.1111/j.1365-2486.2010.02375.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norby, R. J., and D. R. Zak, 2011: Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annu. Rev. Ecol. Evol. Syst., 42, 181203, https://doi.org/10.1146/annurev-ecolsys-102209-144647.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’ishi, R., A. Abe-Ouchi, I. C. Prentice, and S. Sitch, 2009: Vegetation dynamics and plant CO2 responses as positive feedbacks in a greenhouse world. Geophys. Res. Lett., 36, L11706, https://doi.org/10.1029/2009GL038217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S.-W., J.-S. Kim, and J.-S. Kug, 2020: The intensification of Arctic warming as a result of CO2 physiological forcing. Nat. Commun., 11, 2098, https://doi.org/10.1038/s41467-020-15924-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parsons, L. A., K. M. Brennan, R. C. Jnglin Wills, and C. Proistosescu, 2020: Magnitudes and spatial patterns of interdecadal temperature variability in CMIP6. Geophys. Res. Lett., 47, e2019GL086588, https://doi.org/10.1029/2019GL086588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piao, S., and et al. , 2013: Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Global Change Biol., 19, 21172132, https://doi.org/10.1111/gcb.12187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pu, B., and R. E. Dickinson, 2012: Examining vegetation feedbacks on global warming in the Community Earth System Model. J. Geophys. Res., 117, D20110, https://doi.org/10.1029/2012JD017623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, H., R. Joseph, and N. Zeng, 2010: Enhanced terrestrial carbon uptake in the northern high latitudes in the 21st century from the Coupled Carbon Cycle Climate Model Intercomparison Project model projections. Global Change Biol., 16, 641656, https://doi.org/10.1111/j.1365-2486.2009.01989.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, T. B., and et al. , 2018: Carbon dioxide physiological forcing dominates projected eastern Amazonian drying. Geophys. Res. Lett., 45, 28152825, https://doi.org/10.1002/2017GL076520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roe, G., 2009: Feedbacks, timescales, and seeing red. Annu. Rev. Earth Planet. Sci., 37, 93115, https://doi.org/10.1146/annurev.earth.061008.134734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saint-Lu, M., R. Chadwick, F. H. Lambert, and M. Collins, 2019: Surface warming and atmospheric circulation dominate rainfall changes over tropical rainforests under global warming. Geophys. Res. Lett., 46, 13 41013 419, https://doi.org/10.1029/2019GL085295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schimel, D., B. B. Stephens, and J. B. Fisher, 2015: Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl. Acad. Sci. USA, 112, 436441, https://doi.org/10.1073/pnas.1407302112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., and et al. , 1996: Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate. Science, 271, 14021406, https://doi.org/10.1126/science.271.5254.1402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., S. Bony, O. Boucher, C. Bretherton, P. M. Forster, J. M. Gregory, and B. Stevens, 2015: Adjustments in the forcing-feedback framework for understanding climate change. Bull. Amer. Meteor. Soc., 96, 217228, https://doi.org/10.1175/BAMS-D-13-00167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skinner, C. B., C. J. Poulsen, and J. S. Mankin, 2018: Amplification of heat extremes by plant CO2 physiological forcing. Nat. Commun., 9, 1094, https://doi.org/10.1038/s41467-018-03472-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, W. K., S. C. Reed, C. C. Cleveland, A. P. Ballantyne, W. R. L. Anderegg, W. R. Wieder, Y. Y. Liu, and S. W. Running, 2016: Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Climate Change, 6, 306310, https://doi.org/10.1038/nclimate2879.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swann, A. L. S., I. Y. Fung, and J. C. H. Chiang, 2012: Mid-latitude afforestation shifts general circulation and tropical precipitation. Proc. Natl. Acad. Sci. USA, 109, 712716, https://doi.org/10.1073/pnas.1116706108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swann, A. L. S., I. Y. Fung, Y. Liu, and J. C. H. Chiang, 2014: Remote vegetation feedbacks and the mid-Holocene Green Sahara. J. Climate, 27, 48574870, https://doi.org/10.1175/JCLI-D-13-00690.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swann, A. L. S., F. M. Hoffman, C. D. Koven, and J. T. Randerson, 2016: Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl. Acad. Sci. USA, 113, 10 01910 024, https://doi.org/10.1073/pnas.1604581113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, T., and et al. , 2019: Comparison of effective radiative forcing calculations using multiple methods, drivers, and models. J. Geophys. Res. Atmos., 124, 43824394, https://doi.org/10.1029/2018JD030188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vargas Zeppetello, L. R., A. Donohoe, and D. S. Battisti, 2019: Does surface temperature respond to or determine downwelling longwave radiation? Geophys. Res. Lett., 46, 27812789, https://doi.org/10.1029/2019GL082220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vial, J., J.-L. Dufresne, and S. Bony, 2013: On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates. Climate Dyn., 41, 33393362, https://doi.org/10.1007/s00382-013-1725-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vico, G., S. Manzoni, S. Palmroth, and G. Katul, 2011: Effects of stomatal delays on the economics of leaf gas exchange under intermittent light regimes. New Phytol., 192, 640652, https://doi.org/10.1111/j.1469-8137.2011.03847.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webb, M. J., and et al. , 2017: The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6. Geosci. Model Dev., 10, 359384, https://doi.org/10.5194/gmd-10-359-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolz, K. J., T. M. Wertin, M. Abordo, D. Wang, and A. D. B. Leakey, 2017: Diversity in stomatal function is integral to modelling plant carbon and water fluxes. Nat. Ecol. Evol., 1, 12921298, https://doi.org/10.1038/s41559-017-0238-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., W. J. Riley, C. D. Koven, G. Jia, and X. Zhang, 2020: Earlier leaf-out warms air in the north. Nat. Climate Change, 10, 370375, https://doi.org/10.1038/s41558-020-0713-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 450 450 63
Full Text Views 155 155 20
PDF Downloads 177 177 28

Plant Physiology Increases the Magnitude and Spread of the Transient Climate Response to CO2 in CMIP6 Earth System Models

View More View Less
  • 1 Department of Atmospheric Sciences, University of Washington, Seattle, Washington
  • | 2 Department of Atmospheric Sciences, and Department of Biology, University of Washington, Seattle, Washington
  • | 3 Department of Atmospheric Sciences, University of Washington, Seattle, Washington, and Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California
  • | 4 Department of Atmospheric Sciences, and School of Oceanography, University of Washington, Seattle, Washington
  • | 5 Department of Earth System Science, University of California, Irvine, Irvine, California
© Get Permissions
Restricted access

Abstract

Increasing concentrations of CO2 in the atmosphere influence climate both through CO2’s role as a greenhouse gas and through its impact on plants. Plants respond to atmospheric CO2 concentrations in several ways that can alter surface energy and water fluxes and thus surface climate, including changes in stomatal conductance, water use, and canopy leaf area. These plant physiological responses are already embedded in most Earth system models, and a robust literature demonstrates that they can affect global-scale temperature. However, the physiological contribution to transient warming has yet to be assessed systematically in Earth system models. Here this gap is addressed using carbon cycle simulations from phases 5 and 6 of the Coupled Model Intercomparison Project (CMIP) to isolate the radiative and physiological contributions to the transient climate response (TCR), which is defined as the change in globally averaged near-surface air temperature during the 20-yr window centered on the time of CO2 doubling relative to preindustrial CO2 concentrations. In CMIP6 models, the physiological effect contributes 0.12°C (σ: 0.09°C; range: 0.02°–0.29°C) of warming to the TCR, corresponding to 6.1% of the full TCR (σ: 3.8%; range: 1.4%–13.9%). Moreover, variation in the physiological contribution to the TCR across models contributes disproportionately more to the intermodel spread of TCR estimates than it does to the mean. The largest contribution of plant physiology to CO2-forced warming—and the intermodel spread in warming—occurs over land, especially in forested regions.

Corresponding author: Claire M. Zarakas, czarakas@uw.edu

Abstract

Increasing concentrations of CO2 in the atmosphere influence climate both through CO2’s role as a greenhouse gas and through its impact on plants. Plants respond to atmospheric CO2 concentrations in several ways that can alter surface energy and water fluxes and thus surface climate, including changes in stomatal conductance, water use, and canopy leaf area. These plant physiological responses are already embedded in most Earth system models, and a robust literature demonstrates that they can affect global-scale temperature. However, the physiological contribution to transient warming has yet to be assessed systematically in Earth system models. Here this gap is addressed using carbon cycle simulations from phases 5 and 6 of the Coupled Model Intercomparison Project (CMIP) to isolate the radiative and physiological contributions to the transient climate response (TCR), which is defined as the change in globally averaged near-surface air temperature during the 20-yr window centered on the time of CO2 doubling relative to preindustrial CO2 concentrations. In CMIP6 models, the physiological effect contributes 0.12°C (σ: 0.09°C; range: 0.02°–0.29°C) of warming to the TCR, corresponding to 6.1% of the full TCR (σ: 3.8%; range: 1.4%–13.9%). Moreover, variation in the physiological contribution to the TCR across models contributes disproportionately more to the intermodel spread of TCR estimates than it does to the mean. The largest contribution of plant physiology to CO2-forced warming—and the intermodel spread in warming—occurs over land, especially in forested regions.

Corresponding author: Claire M. Zarakas, czarakas@uw.edu
Save