• Allen, M. R., and L. A. Smith, 1997: Optimal filtering in singular spectrum analysis. Phys. Lett., 234A, 419428, https://doi.org/10.1016/S0375-9601(97)00559-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, T., J. M. Gregory, and M. J. Webb, 2015: The dependence of radiative forcing and feedback on evolving patterns of surface temperature change in climate models. J. Climate, 28, 16301648, https://doi.org/10.1175/JCLI-D-14-00545.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armour, K. C., J. Marshall, J. R. Scott, A. Donohoe, and E. R. Newsom, 2016: Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat. Geosci., 9, 549554, https://doi.org/10.1038/ngeo2731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., J. W. Hurrell, I. Ebert-Uphoff, C. Anderson, and D. Anderson, 2019: Viewing forced climate patterns through an AI lens. Geophys. Res. Lett., 46, 13 38913 398, https://doi.org/10.1029/2019GL084944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., B. Toms, J. W. Hurrell, I. Ebert-Uphoff, C. Anderson, and D. Anderson, 2020: Indicator patterns of forced change learned by an artificial neural network. J. Adv. Model. Earth Syst., 12, e2020MS002195, https://doi.org/10.1029/2020MS002195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, T. L., 1986: Theory of optimal weighting of data to detect climatic change. J. Atmos. Sci., 43, 16941710, https://doi.org/10.1175/1520-0469(1986)043<1694:TOOWOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellomo, K., L. N. Murphy, M. A. Cane, A. C. Clement, and L. M. Polvani, 2018: Historical forcings as main drivers of the Atlantic multidecadal variability in the CESM large ensemble. Climate Dyn., 50, 36873698, https://doi.org/10.1007/s00382-017-3834-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellucci, A., A. Mariotti, and S. Gualdi, 2017: The role of forcings in the twentieth-century North Atlantic multidecadal variability: The 1940–75 North Atlantic cooling case study. J. Climate, 30, 73177337, https://doi.org/10.1175/JCLI-D-16-0301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonan, D. B., J. E. Christian, and K. Christianson, 2019: Influence of North Atlantic climate variability on glacier mass balance in Norway, Sweden and Svalbard. J. Glaciol., 65, 580594, https://doi.org/10.1017/jog.2019.35.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booth, B. B., N. J. Dunstone, P. R. Halloran, T. Andrews, and N. Bellouin, 2012: Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 484, 228232, https://doi.org/10.1038/nature10946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booth, B. B., G. R. Harris, A. Jones, L. Wilcox, M. Hawcroft, and K. S. Carslaw, 2018: Comments on “Rethinking the lower bound on aerosol radiative forcing.” J. Climate, 31, 94079412, https://doi.org/10.1175/JCLI-D-17-0369.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., C. Smith, and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5, 541560, https://doi.org/10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., K. A. Dahl, and R. J. Stouffer, 2006: Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett., 33, L01702, https://doi.org/10.1029/2005GL024546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cane, M. A., A. C. Clement, A. Kaplan, Y. Kushnir, D. Pozdnyakov, R. Seager, S. E. Zebiak, and R. Murtugudde, 1997: Twentieth-century sea surface temperature trends. Science, 275, 957960, https://doi.org/10.1126/science.275.5302.957.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cane, M. A., A. C. Clement, L. N. Murphy, and K. Bellomo, 2017: Low-pass filtering, heat flux, and Atlantic multidecadal variability. J. Climate, 30, 75297553, https://doi.org/10.1175/JCLI-D-16-0810.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., J. M. Wallace, and K.-K. Tung, 2017: Pairwise-rotated EOFs of global SST. J. Climate, 30, 54735489, https://doi.org/10.1175/JCLI-D-16-0786.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christian, J. E., N. Siler, M. Koutnik, and G. Roe, 2016: Identifying dynamically induced variability in glacier mass-balance records. J. Climate, 29, 89158929, https://doi.org/10.1175/JCLI-D-16-0128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coats, S., and K. Karnauskas, 2017: Are simulated and observed twentieth century tropical Pacific sea surface temperature trends significant relative to internal variability? Geophys. Res. Lett., 44, 99289937, https://doi.org/10.1002/2017GL074622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coats, S., J. E. Smerdon, B. I. Cook, and R. Seager, 2015: Are simulated megadroughts in the North American Southwest forced? J. Climate, 28, 124142, https://doi.org/10.1175/JCLI-D-14-00071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cowtan, K., and R. G. Way, 2014: Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Quart. J. Roy. Meteor. Soc., 140, 19351944, https://doi.org/10.1002/qj.2297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DelSole, T., M. K. Tippett, and J. Shukla, 2011: A significant component of unforced multidecadal variability in the recent acceleration of global warming. J. Climate, 24, 909926, https://doi.org/10.1175/2010JCLI3659.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Déqué, M., 1988: 10-day predictability of the Northern Hemisphere winter 500-mb height by the ECMWF operational model. Tellus, 40A, 2636, https://doi.org/10.3402/tellusa.v40i1.11780.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., and M. L. Blackmon, 1993: Surface climate variations over the North Atlantic Ocean during winter: 1900–1989. J. Climate, 6, 17431753, https://doi.org/10.1175/1520-0442(1993)006<1743:SCVOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., R. Knutti, S. Solomon, and A. S. Phillips, 2012a: Communication of the role of natural variability in future North American climate. Nat. Climate Change, 2, 775779, https://doi.org/10.1038/nclimate1562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Phillips, V. Bourdette, and H. Teng, 2012b: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546, https://doi.org/10.1007/s00382-010-0977-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Phillips, M. A. Alexander, and B. V. Smoliak, 2014: Projecting North American climate over the next 50 years: Uncertainty due to internal variability. J. Climate, 27, 22712296, https://doi.org/10.1175/JCLI-D-13-00451.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., L. Terray, and A. S. Phillips, 2016: Forced and internal components of winter air temperature trends over North America during the past 50 years: Mechanisms and implications. J. Climate, 29, 22372258, https://doi.org/10.1175/JCLI-D-15-0304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., J. W. Hurrell, and A. S. Phillips, 2017: The role of the North Atlantic Oscillation in European climate projections. Climate Dyn., 49, 31413157, https://doi.org/10.1007/s00382-016-3502-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., and et al. , 2020a: Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Climate Change, 10, 277286, https://doi.org/10.1038/s41558-020-0731-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., and et al. , 2020b: Isolating the evolving contributions of anthropogenic aerosols and greenhouse gases: A new CESM1 large ensemble community resource. J. Climate, 33, 78357858, https://doi.org/10.1175/JCLI-D-20-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eade, R., D. Smith, A. Scaife, E. Wallace, N. Dunstone, L. Hermanson, and N. Robinson, 2014: Do seasonal-to-decadal climate predictions underestimate the predictability of the real world? Geophys. Res. Lett., 41, 56205628, https://doi.org/10.1002/2014GL061146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eisenman, I., T. Schneider, D. S. Battisti, and C. M. Bitz, 2011: Consistent changes in the sea ice seasonal cycle in response to global warming. J. Climate, 24, 53255335, https://doi.org/10.1175/2011JCLI4051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas-Nuñez, and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 20772080, https://doi.org/10.1029/2000GL012745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • England, M. H., and et al. , 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Climate Change, 4, 222227, https://doi.org/10.1038/nclimate2106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankcombe, L. M., M. H. England, M. E. Mann, and B. A. Steinman, 2015: Separating internal variability from the externally forced climate response. J. Climate, 28, 81848202, https://doi.org/10.1175/JCLI-D-15-0069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., G. Gastineau, and Y.-O. Kwon, 2017: Estimation of the SST response to anthropogenic and external forcing and its impact on the Atlantic multidecadal oscillation and the Pacific decadal oscillation. J. Climate, 30, 98719895, https://doi.org/10.1175/JCLI-D-17-0009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., G. Gollan, T. Jung, and T. Kunz, 2012: Factors influencing Northern Hemisphere winter mean atmospheric circulation anomalies during the period 1960/61 to 2001/02. Quart. J. Roy. Meteor. Soc., 138, 19701982, https://doi.org/10.1002/qj.1947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, R., C. Deser, L. Terray, and F. Lehner, 2019: Human influence on winter precipitation trends (1921–2015) over North America and Eurasia revealed by dynamical adjustment. Geophys. Res. Lett., 46, 34263434, https://doi.org/10.1029/2018GL081316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harzallah, A., and R. Sadourny, 1995: Internal versus SST-forced atmospheric variability as simulated by an atmospheric general circulation model. J. Climate, 8, 474495, https://doi.org/10.1175/1520-0442(1995)008<0474:IVSFAV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1979: On the signal-to-noise problem in atmospheric response studies. Meteorology over the Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 251–259.

  • Hasselmann, K., 1993: Optimal fingerprints for the detection of time-dependent climate change. J. Climate, 6, 19571971, https://doi.org/10.1175/1520-0442(1993)006<1957:OFFTDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haustein, K., and et al. , 2019: A limited role for unforced internal variability in twentieth-century warming. J. Climate, 32, 48934917, https://doi.org/10.1175/JCLI-D-18-0555.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, E., and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90, 10951108, https://doi.org/10.1175/2009BAMS2607.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., H. von Storch, K. Hasselmann, B. D. Santer, U. Cubasch, and P. D. Jones, 1996: Detecting greenhouse-gas-induced climate change with an optimal fingerprint method. J. Climate, 9, 22812306, https://doi.org/10.1175/1520-0442(1996)009<2281:DGGICC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269, 676679, https://doi.org/10.1126/science.269.5224.676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeffrey, S., L. Rotstayn, M. Collier, S. Dravitzki, C. Hamalainen, C. Moeseneder, K. Wong, and J. Syktus, 2013: Australia’s CMIP5 submission using the CSIRO Mk3.6 model. Aust. Meteor. Oceanogr. J., 63 (1), 114, https://doi.org/10.22499/2.6301.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., I. M. Held, D. M. Frierson, and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 35213532, https://doi.org/10.1175/2007JCLI2146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J., and et al. , 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khodri, M., and et al. , 2017: Tropical explosive volcanic eruptions can trigger El Niño by cooling tropical Africa. Nat. Commun., 8, 778, https://doi.org/10.1038/S41467-017-00755-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirchmeier-Young, M. C., F. W. Zwiers, and N. P. Gillett, 2017: Attribution of extreme events in Arctic sea ice extent. J. Climate, 30, 553571, https://doi.org/10.1175/JCLI-D-16-0412.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohyama, T., D. L. Hartmann, and D. S. Battisti, 2017: La Niña–like mean-state response to global warming and potential oceanic roles. J. Climate, 30, 42074225, https://doi.org/10.1175/JCLI-D-16-0441.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., I. M. Held, and T. L. Delworth, 2001: Southern Hemisphere atmospheric circulation response to global warming. J. Climate, 14, 22382249, https://doi.org/10.1175/1520-0442(2001)014<0001:SHACRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawley, D., 1956: Tests of significance for the latent roots of covariance and correlation matrices. Biometrika, 43, 128136, https://doi.org/10.2307/2333586.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehner, F., C. Deser, and L. Terray, 2017: Toward a new estimate of “time of emergence” of anthropogenic warming: Insights from dynamical adjustment and a large initial-condition model ensemble. J. Climate, 30, 77397756, https://doi.org/10.1175/JCLI-D-16-0792.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E., 1975: Climatic predictability. The Physical Basis of Climate and Climate Modelling, B. Bolin et al., Eds., GARP Publication Series, Vol. 16, World Meteorological Organization, 132–136.

  • Maher, N., S. McGregor, M. H. England, and A. Sen Gupta, 2015: Effects of volcanism on tropical variability. Geophys. Res. Lett., 42, 60246033, https://doi.org/10.1002/2015GL064751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maher, N., and et al. , 2019: The Max Planck Institute Grand Ensemble: Enabling the exploration of climate system variability. J. Adv. Model. Earth Syst., 11, 20502069, https://doi.org/10.1029/2019MS001639.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKinnon, K. A., A. Poppick, E. Dunn-Sigouin, and C. Deser, 2017: An “observational large ensemble” to compare observed and modeled temperature trend uncertainty due to internal variability. J. Climate, 30, 75857598, https://doi.org/10.1175/JCLI-D-16-0905.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M., T. Lee, and D. McClurg, 2011: El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys. Res. Lett., 38, L15709, https://doi.org/10.1029/2011GL048275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and et al. , 2009: Decadal prediction: Can it be skillful? Bull. Amer. Meteor. Soc., 90, 14671486, https://doi.org/10.1175/2009BAMS2778.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merrifield, A., F. Lehner, S.-P. Xie, and C. Deser, 2017: Removing circulation effects to assess central U.S. land–atmosphere interactions in the CESM large ensemble. Geophys. Res. Lett., 44, 99389946, https://doi.org/10.1002/2017GL074831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., and et al. , 2016: The Pacific decadal oscillation, revisited. J. Climate, 29, 43994427, https://doi.org/10.1175/JCLI-D-15-0508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 1999: A nonlinear dynamical perspective on climate prediction. J. Climate, 12, 575591, https://doi.org/10.1175/1520-0442(1999)012<0575:ANDPOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pausata, F. S. R., D. Zanchetti, C. Karamperidou, R. Caballero, and D. Battisti, 2020: ITCZ shift and extratropical teleconnections drive ENSO response to volcanic eruptions. Sci. Adv., 23, eaaz5006, https://doi.org/10.1126/sciadv.aaz5006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodgers, K. B., J. Lin, and T. L. Frölicher, 2015: Emergence of multiple ocean ecosystem drivers in a large ensemble suite with an Earth system model. Biogeosciences, 12, 33013320, https://doi.org/10.5194/bg-12-3301-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saffioti, C., E. M. Fischer, S. C. Scherrer, and R. Knutti, 2016: Reconciling observed and modeled temperature and precipitation trends over Europe by adjusting for circulation variability. Geophys. Res. Lett., 43, 81898198, https://doi.org/10.1002/2016GL069802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santer, B. D., W. Brüggemann, U. Cubasch, K. Hasselmann, H. Höck, E. Maier-Reimer, and U. Mikolajewica, 1994: Signal-to-noise analysis of time-dependent greenhouse warming experiments. Climate Dyn., 9, 267285, https://doi.org/10.1007/BF00204743.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A., and D. Smith, 2018: A signal-to-noise paradox in climate science. npj Climate Atmos. Sci., 1, 28, https://doi.org/10.1038/S41612-018-0038-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A., and et al. , 2014: Skillful long-range prediction of European and North American winters. Geophys. Res. Lett., 41, 25142519, https://doi.org/10.1002/2014GL059637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2001: Analysis of incomplete climate data: Estimation of mean values and covariance matrices and imputation of missing values. J. Climate, 14, 853871, https://doi.org/10.1175/1520-0442(2001)014<0853:AOICDE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., and S. M. Griffies, 1999: A conceptual framework for predictability studies. J. Climate, 12, 31333155, https://doi.org/10.1175/1520-0442(1999)012<3133:ACFFPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., and I. M. Held, 2001: Discriminants of twentieth-century changes in Earth surface temperatures. J. Climate, 14, 249254, https://doi.org/10.1175/1520-0442(2001)014<0249:LDOTCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, and G. A. Vecchi, 2010: Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Climate, 23, 46514668, https://doi.org/10.1175/2010JCLI3655.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., M. Cane, N. Henderson, D.-E. Lee, R. Abernathey, and H. Zhang, 2019: Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nat. Climate Change, 9, 517522, https://doi.org/10.1038/s41558-019-0505-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Semenov, V. A., M. Latif, J. H. Jungclaus, and W. Park, 2008: Is the observed NAO variability during the instrumental record unusual? Geophys. Res. Lett., 35, L11701, https://doi.org/10.1029/2008GL033273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Semenov, V. A., M. Latif, D. Dommenget, N. S. Keenlyside, A. Strehz, T. Martin, and W. Park, 2010: The impact of North Atlantic–Arctic multidecadal variability on Northern Hemisphere surface air temperature. J. Climate, 23, 56685677, https://doi.org/10.1175/2010JCLI3347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shindell, D. T., and et al. , 2013: Radiative forcing in the ACCMIP historical and future climate simulations. Atmos. Chem. Phys., 13, 29392974, https://doi.org/10.5194/acp-13-2939-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siler, N., C. Proistosescu, and S. Po-Chedley, 2019: Natural variability has slowed the decline in western U.S. snowpack since the 1980s. Geophys. Res. Lett., 46, 346355, https://doi.org/10.1029/2018GL081080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., C. Deser, K. A. McKinnon, and E. A. Barnes, 2018: Modeled and observed multidecadal variability in the North Atlantic jet stream and its connection to sea surface temperatures. J. Climate, 31, 83138338, https://doi.org/10.1175/JCLI-D-18-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sippel, S., N. Meinshausen, A. Merrifield, F. Lehner, A. G. Pendergrass, E. Fischer, and R. Knutti, 2019: Uncovering the forced climate response from a single ensemble member using statistical learning. J. Climate, 32, 56775699, https://doi.org/10.1175/JCLI-D-18-0882.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smoliak, B. V., J. M. Wallace, P. Lin, and Q. Fu, 2015: Dynamical adjustment of the Northern Hemisphere surface air temperature field: Methodology and application to observations. J. Climate, 28, 16131629, https://doi.org/10.1175/JCLI-D-14-00111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, A., and M. Newman, 2012: Reconciling disparate twentieth-century Indo-Pacific ocean temperature trends in the instrumental record. Nat. Climate Change, 2, 691699, https://doi.org/10.1038/nclimate1591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, A., and et al. , 2011: Distinguishing the roles of natural and anthropogenically forced decadal climate variability: Implications for prediction. Bull. Amer. Meteor. Soc., 92, 141156, https://doi.org/10.1175/2010BAMS2962.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, W., and K. Miyakoda, 1995: Feasibility of seasonal forecasts inferred from multiple GCM simulations. J. Climate, 8, 10711085, https://doi.org/10.1175/1520-0442(1995)008<1071:FOSFIF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stolpe, M. B., I. Medhaug, and R. Knutti, 2017: Contribution of Atlantic and Pacific multidecadal variability to twentieth-century temperature changes. J. Climate, 30, 62796295, https://doi.org/10.1175/JCLI-D-16-0803.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stolpe, M. B., I. Medhaug, J. Sedláček, and R. Knutti, 2018: Multidecadal variability in global surface temperatures related to the Atlantic meridional overturning circulation. J. Climate, 31, 28892906, https://doi.org/10.1175/JCLI-D-17-0444.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, L., M. Alexander, and C. Deser, 2018: Evolution of the global coupled climate response to Arctic sea ice loss during 1990–2090 and its contribution to climate change. J. Climate, 31, 78237843, https://doi.org/10.1175/JCLI-D-18-0134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, C., and M. Watanabe, 2016: Pacific trade winds accelerated by aerosol forcing over the past two decades. Nat. Climate Change, 6, 768772, https://doi.org/10.1038/nclimate2996.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tandon, N. F., and P. J. Kushner, 2015: Does external forcing interfere with the AMOC’s influence on North Atlantic sea surface temperature? J. Climate, 28, 63096323, https://doi.org/10.1175/JCLI-D-14-00664.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W., S. Solomon, P. J. Kushner, M. H. England, K. M. Grise, and D. J. Karoly, 2011: Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci., 4, 741749, https://doi.org/10.1038/ngeo1296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W., E. A. Barnes, C. Deser, W. E. Foust, and A. S. Phillips, 2015: Quantifying the role of internal climate variability in future climate trends. J. Climate, 28, 64436456, https://doi.org/10.1175/JCLI-D-14-00830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., Y. Kushnir, R. Seager, and C. Li, 2009: Forced and internal twentieth-century SST trends in the North Atlantic. J. Climate, 22, 14691481, https://doi.org/10.1175/2008JCLI2561.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. W. Hurrell, 1994: Decadal atmosphere–ocean variations in the Pacific. Climate Dyn., 9, 303319, https://doi.org/10.1007/BF00204745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. J. Shea, 2006: Atlantic hurricanes and natural variability in 2005. Geophys. Res. Lett., 33, L12704, https://doi.org/10.1029/2006GL026894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, U., and M. Christoph, 1999: A shift of the NAO and increasing storm track activity over Europe due to anthropogenic greenhouse gas forcing. Climate Dyn., 15, 551559, https://doi.org/10.1007/s003820050299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Venzke, S., M. R. Allen, R. T. Sutton, and D. P. Rowell, 1999: The atmospheric response over the North Atlantic to decadal changes in sea surface temperature. J. Climate, 12, 25622584, https://doi.org/10.1175/1520-0442(1999)012<2562:TAROTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., Q. Fu, B. V. Smoliak, P. Lin, and C. M. Johanson, 2012: Simulated versus observed patterns of warming over the extratropical Northern Hemisphere continents during the cold season. Proc. Natl. Acad. Sci. USA, 109, 14 33714 342, https://doi.org/10.1073/pnas.1204875109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and H. Tatebe, 2019: Reconciling roles of sulphate aerosol forcing and internal variability in Atlantic multidecadal climate changes. Climate Dyn., 53, 46514665, https://doi.org/10.1007/s00382-019-04811-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wills, R. C., D. S. Battisti, D. L. Hartmann, and T. Schneider, 2017: Extracting modes of variability and change from climate model ensembles. Proc. Seventh Int. Workshop on Climate Informatics: CI 2017, V. Lyubchich et al., Eds., NCAR Tech. Note NCAR/TN-536+PROC, 25–28.

  • Wills, R. C., T. Schneider, J. M. Wallace, D. S. Battisti, and D. L. Hartmann, 2018: Disentangling global warming, multidecadal variability, and El Niño in Pacific temperatures. Geophys. Res. Lett., 45, 24872496, https://doi.org/10.1002/2017GL076327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wills, R. C., K. C. Armour, D. S. Battisti, and D. L. Hartmann, 2019a: Ocean–atmosphere dynamic coupling fundamental to the Atlantic multidecadal oscillation. J. Climate, 32, 251272, https://doi.org/10.1175/JCLI-D-18-0269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wills, R. C., D. S. Battisti, C. Proistosescu, L. Thompson, D. L. Hartmann, and K. C. Armour, 2019b: Ocean circulation signatures of North Pacific decadal variability. Geophys. Res. Lett., 46, 16901701, https://doi.org/10.1029/2018GL080716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701, https://doi.org/10.1029/2005GL023684.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., and et al. , 2013: Have aerosols caused the observed Atlantic multidecadal variability? J. Atmos. Sci., 70, 11351144, https://doi.org/10.1175/JAS-D-12-0331.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., R. Sutton, G. Danabasoglu, Y.-O. Kwon, R. Marsh, S. G. Yeager, D. E. Amrhein, and C. M. Little, 2019: A review of the role of the Atlantic meridional overturning circulation in Atlantic multidecadal variability and associated climate impacts. Rev. Geophys., 57, 316375, https://doi.org/10.1029/2019rg000644.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., and J. E. Walsh, 2006: Toward a seasonally ice-covered Arctic Ocean: Scenarios from the IPCC AR4 model simulations. J. Climate, 19, 17301747, https://doi.org/10.1175/JCLI3767.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zwiers, F., 1996: Interannual variability and predictability in an ensemble of AMIP climate simulations conducted with the CCC GCM2. Climate Dyn., 12, 825847, https://doi.org/10.1007/s003820050146.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 604 604 61
Full Text Views 227 227 18
PDF Downloads 254 254 23

Pattern Recognition Methods to Separate Forced Responses from Internal Variability in Climate Model Ensembles and Observations

View More View Less
  • 1 University of Washington, Seattle, Washington
  • | 2 California Institute of Technology, Pasadena, California
  • | 3 National Center for Atmospheric Research, Boulder, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Ensembles of climate model simulations are commonly used to separate externally forced climate change from internal variability. However, much of the information gained from running large ensembles is lost in traditional methods of data reduction such as linear trend analysis or large-scale spatial averaging. This paper demonstrates how a pattern recognition method (signal-to-noise-maximizing pattern filtering) extracts patterns of externally forced climate change from large ensembles and identifies the forced climate response with up to 10 times fewer ensemble members than simple ensemble averaging. It is particularly effective at filtering out spatially coherent modes of internal variability (e.g., El Niño, North Atlantic Oscillation), which would otherwise alias into estimates of regional responses to forcing. This method is used to identify forced climate responses within the 40-member Community Earth System Model (CESM) large ensemble, including an El Niño–like response to volcanic eruptions and forced trends in the North Atlantic Oscillation. The ensemble-based estimate of the forced response is used to test statistical methods for isolating the forced response from a single realization (i.e., individual ensemble members). Low-frequency pattern filtering is found to skillfully identify the forced response within individual ensemble members and is applied to the HadCRUT4 reconstruction of observed temperatures, whereby it identifies slow components of observed temperature changes that are consistent with the expected effects of anthropogenic greenhouse gas and aerosol forcing.

Corresponding author: Robert C. Jnglin Wills, rcwills@uw.edu

Abstract

Ensembles of climate model simulations are commonly used to separate externally forced climate change from internal variability. However, much of the information gained from running large ensembles is lost in traditional methods of data reduction such as linear trend analysis or large-scale spatial averaging. This paper demonstrates how a pattern recognition method (signal-to-noise-maximizing pattern filtering) extracts patterns of externally forced climate change from large ensembles and identifies the forced climate response with up to 10 times fewer ensemble members than simple ensemble averaging. It is particularly effective at filtering out spatially coherent modes of internal variability (e.g., El Niño, North Atlantic Oscillation), which would otherwise alias into estimates of regional responses to forcing. This method is used to identify forced climate responses within the 40-member Community Earth System Model (CESM) large ensemble, including an El Niño–like response to volcanic eruptions and forced trends in the North Atlantic Oscillation. The ensemble-based estimate of the forced response is used to test statistical methods for isolating the forced response from a single realization (i.e., individual ensemble members). Low-frequency pattern filtering is found to skillfully identify the forced response within individual ensemble members and is applied to the HadCRUT4 reconstruction of observed temperatures, whereby it identifies slow components of observed temperature changes that are consistent with the expected effects of anthropogenic greenhouse gas and aerosol forcing.

Corresponding author: Robert C. Jnglin Wills, rcwills@uw.edu
Save