• Alkama, R., and A. Cescatti, 2016: Biophysical climate impacts of recent changes in global forest cover. Science, 351, 600604, https://doi.org/10.1126/science.aac8083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arora, V. K., and A. Montenegro, 2011: Small temperature benefits provided by realistic afforestation efforts. Nat. Geosci., 4, 514518, https://doi.org/10.1038/ngeo1182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, R. A., 2000: Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature, 408, 187190, https://doi.org/10.1038/35041545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, R. A., 2001: Biogeophysical impacts of land use on present-day climate: Near-surface temperature change and radiative forcing. Atmos. Sci. Lett., 2, 3951, https://doi.org/10.1006/asle.2001.0023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boone, A. A., and et al. , 2016: The regional impact of land-use land-cover change (LULCC) over West Africa from an ensemble of global climate models under the auspices of the WAMME2 project. Climate Dyn., 47, 35473573, https://doi.org/10.1007/s00382-016-3252-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bright, R. M., E. Davin, T. O’Halloran, J. Pongratz, K. G. Zhao, and A. Cescatti, 2017: Local temperature response to land cover and management change driven by non-radiative processes. Nat. Climate Change, 7, 296302, https://doi.org/10.1038/nclimate3250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., K. A. Dahl, and R. J. Stouffer, 2006: Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett., 33, L01702, https://doi.org/10.1029/2005GL024546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brovkin, V., and et al. , 2013: Effect of anthropogenic land-use and land-cover changes on climate and land carbon storage in CMIP5 projections for the twenty-first century. J. Climate, 26, 68596881, https://doi.org/10.1175/JCLI-D-12-00623.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., and T. Schneider, 2016: Energetic constraints on the width of the intertropical convergence zone. J. Climate, 29, 47094721, https://doi.org/10.1175/JCLI-D-15-0767.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chagnon, F. J. F., R. L. Bras, and J. Wang, 2004: Climatic shift in patterns of shallow clouds over the Amazon. Geophys. Res. Lett., 31, L24212, https://doi.org/10.1029/2004GL021188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chase, T. N., 1995: The sensitivity of a general circulation model to large scale vegetation changes. Paper 581, Dept. of Atmospheric Science, Colorado State, 57 pp.

  • Chen, G., and I. M. Held, 2007: Phase speed spectra and the recent poleward shift of Southern Hemisphere surface westerlies. Geophys. Res. Lett., 34, L21805, https://doi.org/10.1029/2007GL031200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., J. Lu, and D. M. W. Frierson, 2008: Phase speed spectra and the latitude of surface westerlies: Interannual variability and global warming trend. J. Climate, 21, 59425959, https://doi.org/10.1175/2008JCLI2306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., and P. A. Dirmeyer, 2016: Adapting observationally based metrics of biogeophysical feedbacks from land cover/land use change to climate modeling. Environ. Res. Lett., 11, 034002, https://doi.org/10.1088/1748-9326/11/3/034002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and C. M. Bitz, 2005: Influence of high latitude ice cover on the marine intertropical convergence zone. Climate Dyn., 25, 477496, https://doi.org/10.1007/s00382-005-0040-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chilukoti, N., and Y. Xue, 2020: An assessment of potential climate impact during 1948–2010 using historical land use land cover change maps. Int. J. Climatol., https://doi.org/10.1002/JOC.6621, in press.

    • Search Google Scholar
    • Export Citation
  • Cvijanovic, I., B. D. Santer, C. Bonfils, D. D. Lucas, J. C. H. Chiang, and S. Zimmerman, 2017: Future loss of Arctic sea-ice cover could drive a substantial decrease in California’s rainfall. Nat. Commun., 8, 1947, https://doi.org/10.1038/s41467-017-01907-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davin, E. L., and N. de Noblet-Ducoudre, 2010: Climatic impact of global-scale deforestation: Radiative versus nonradiative processes. J. Climate, 23, 97112, https://doi.org/10.1175/2009JCLI3102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davin, E. L., N. de Noblet-Ducoudre, and P. Friedlingstein, 2007: Impact of land cover change on surface climate: Relevance of the radiative forcing concept. Geophys. Res. Lett., 34, L13702, https://doi.org/10.1029/2007GL029678.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., R. A. Tomas, and L. T. Sun, 2015: The role of ocean–atmosphere coupling in the zonal-mean atmospheric response to Arctic sea ice loss. J. Climate, 28, 21682186, https://doi.org/10.1175/JCLI-D-14-00325.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., L. T. Sun, R. A. Tomas, and J. Screen, 2016: Does ocean coupling matter for the northern extratropical response to projected Arctic sea ice loss? Geophys. Res. Lett., 43, 21492157, https://doi.org/10.1002/2016GL067792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Devaraju, N., G. Bala, and A. Modak, 2015: Effects of large-scale deforestation on precipitation in the monsoon regions: Remote versus local effects. Proc. Natl. Acad. Sci. USA, 112, 32573262, https://doi.org/10.1073/pnas.1423439112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Devaraju, N., N. Noblet-Ducoudré, B. Quesada, and G. Bala, 2018: Quantifying the relative importance of direct and indirect biophysical effects of deforestation on surface temperature and teleconnections. J. Climate, 31, 38113829, https://doi.org/10.1175/JCLI-D-17-0563.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diallo, I., Y. K. Xue, Q. Li, F. De Sales, and W. Li, 2019: Dynamical downscaling the impact of spring western US land surface temperature on the 2015 flood extremes at the southern Great Plains: Effect of domain choice, dynamic cores and land surface parameterization. Climate Dyn., 53, 10391061, https://doi.org/10.1007/s00382-019-04630-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duveiller, G., J. Hooker, and A. Cescatti, 2018: The mark of vegetation change on Earth’s surface energy balance. Nat. Commun., 9, 679, https://doi.org/10.1038/s41467-017-02810-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FAO, 2007: State of the world’s forests 2007. Food and Agriculture Organization of the United Nations, 144 pp., http://www.fao.org/3/a0773e/a0773e00.htm.

  • Findell, K. L., A. J. Pitman, M. H. England, and P. J. Pegion, 2009: Regional and global impacts of land cover change and sea surface temperature anomalies. J. Climate, 22, 32483269, https://doi.org/10.1175/2008JCLI2580.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forster, P., and et al. , 2007: Changes in atmospheric constituents and in radiative forcing. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 129–234.

  • Frierson, D. M. W., 2007: The dynamics of idealized convection schemes and their effect on the zonally averaged tropical circulation. J. Atmos. Sci., 64, 19591976, https://doi.org/10.1175/JAS3935.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., and et al. , 2013: Contribution of ocean overturning circulation to tropical rainfall peak in the Northern Hemisphere. Nat. Geosci., 6, 940944, https://doi.org/10.1038/ngeo1987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gash, J. H. C., and C. A. Nobre, 1997: Climatic effects of Amazonian deforestation: Some results from ABRACOS. Bull. Amer. Meteor. Soc., 78, 823830, https://doi.org/10.1175/1520-0477(1997)078<0823:CEOADS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., M. J. Harrison, R. C. Pacanowski, and A. Rosati, 2004: A technical guide to MOM4. GFDL Ocean Group Tech. Rep. 5, NOAA/GFDL, 342 pp., https://www.gfdl.noaa.gov/bibliography/related_files/smg0301.pdf.

  • Guo, W. D., X. Q. Wang, J. N. Sun, A. J. Ding, and J. Zou, 2016: Comparison of land–atmosphere interaction at different surface types in the mid- to lower reaches of the Yangtze River valley. Atmos. Chem. Phys., 16, 98759890, https://doi.org/10.5194/acp-16-9875-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 1994: Global Physical Climatology. Academic Press, 425 pp.

  • Haywood, J. M., and et al. , 2016: The impact of equilibrating hemispheric albedos on tropical performance in the HadGEM2-ES coupled climate model. Geophys. Res. Lett., 43, 395403, https://doi.org/10.1002/2015GL066903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirsch, A. L., and et al. , 2018: Biogeophysical impacts of land-use change on climate extremes in low-emission scenarios: Results from HAPPI-land. Earth’s Future, 6, 396409, https://doi.org/10.1002/2017EF000744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hua, F., and et al. , 2016: Opportunities for biodiversity gains under the world’s largest reforestation programme. Nat. Commun., 7, 12717, https://doi.org/10.1038/ncomms12717.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, H., Y. Gu, Y. Xue, J. Jiang, and B. Zhao, 2019: Assessing aerosol indirect effect on clouds and regional climate of East/South Asia and West Africa using NCEP GFS. Climate Dyn., 52, 57595774, https://doi.org/10.1007/s00382-018-4476-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurtt, G. C., S. Frolking, M. G. Fearon, B. Moore, E. Shevliakova, S. Malyshev, S. W. Pacala, and R. A. Houghton, 2006: The underpinnings of land-use history: Three centuries of global gridded land-use transitions, wood-harvest activity, and resulting secondary lands. Global Change Biol., 12, 12081229, https://doi.org/10.1111/j.1365-2486.2006.01150.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurtt, G. C., and et al. , 2011: Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change, 109, 117161, https://doi.org/10.1007/s10584-011-0153-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Juang, J. Y., G. Katul, M. Siqueira, P. Stoy, and K. Novick, 2007: Separating the effects of albedo from eco-physiological changes on surface temperature along a successional chronosequence in the southeastern United States. Geophys. Res. Lett., 34, L21408, https://doi.org/10.1029/2007GL031296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, H. S., Y. K. Xue, and G. J. Collatz, 2007: Impact assessment of satellite-derived leaf area index datasets using a general circulation model. J. Climate, 20, 9931015, https://doi.org/10.1175/JCLI4054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., D. M. W. Frierson, and I. M. Held, 2009: The tropical response to extratropical thermal forcing in an idealized GCM: The importance of radiative feedbacks and convective parameterization. J. Atmos. Sci., 66, 28122827, https://doi.org/10.1175/2009JAS2924.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and et al. , 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610, https://doi.org/10.1175/JHM510.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laguë, M. M., and A. L. S. Swann, 2016: Progressive midlatitude afforestation: Impacts on clouds, global energy transport, and precipitation. J. Climate, 29, 55615573, https://doi.org/10.1175/JCLI-D-15-0748.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and et al. , 2016: The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: Rationale and experimental design. Geosci. Model Dev., 9, 29732998, https://doi.org/10.5194/gmd-9-2973-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J., Y. Xue, F. De Sales, I. Diallo, L. Marx, M. Ek, K. R. Sperber, and P. J. Gleckler, 2019: Evaluation of multi-decadal UCLA-CFSv2 simulation and impact of interactive atmospheric–ocean feedback on global and regional variability. Climate Dyn., 52, 36833707, https://doi.org/10.1007/s00382-018-4351-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, X., and et al. , 2011: Observed increase in local cooling effect of deforestation at higher latitudes. Nature, 479, 384387, https://doi.org/10.1038/nature10588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lejeune, Q., S. I. Seneviratne, and E. L. Davin, 2017: Historical land-cover change impacts on climate: Comparative assessment of LUCID and CMIP5 multimodel experiments. J. Climate, 30, 14391459, https://doi.org/10.1175/JCLI-D-16-0213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, W. P., Y. K. Xue, and I. Poccard, 2007: Numerical investigation of the impact of vegetation indices on the variability of West African summer monsoon. J. Meteor. Soc. Japan, 85A, 363383, https://doi.org/10.2151/jmsj.85A.363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., M. S. Zhao, S. Motesharrei, Q. Z. Mu, E. Kalnay, and S. C. Li, 2015: Local cooling and warming effects of forests based on satellite observations. Nat. Commun., 6, 8, https://doi.org/10.1038/ncomms7603.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., W. D. Guo, and Y. M. Song, 2016: Estimation of key surface parameters in semi-arid region and their impacts on improvement of surface fluxes simulation. Sci. China Earth Sci., 59, 307319, https://doi.org/10.1007/s11430-015-5140-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., Y. K. Xue, G. MacDonald, P. Cox, and Z. Q. Zhang, 2019: Global vegetation variability and its response to elevated CO2, global warming, and climate variability—A study using the offline SSiB4/TRIFFID model and satellite data. Earth Syst. Dyn., 10, 929, https://doi.org/10.5194/esd-10-9-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, R., A. J. Pitman, and S. A. Sisson, 2016: Does Amazonian deforestation cause global effects; can we be sure? J. Geophys. Res. Atmos., 121, 55675584, https://doi.org/10.1002/2015JD024357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luyssaert, S., and et al. , 2014: Land management and land-cover change have impacts of similar magnitude on surface temperature. Nat. Climate Change, 4, 389393, https://doi.org/10.1038/nclimate2196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyons, T. J., 2002: Clouds prefer native vegetation. Meteor. Atmos. Phys., 80, 131140, https://doi.org/10.1007/s007030200020.

  • Ma, H. Y., H. Xiao, C. R. Mechoso, and Y. K. Xue, 2013a: Sensitivity of global tropical climate to land surface processes: Mean state and interannual variability. J. Climate, 26, 18181837, https://doi.org/10.1175/JCLI-D-12-00142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, H. Y., C. R. Mechoso, Y. K. Xue, H. Xiao, J. D. Neelin, and X. Ji, 2013b: On the connection between continental-scale land surface processes and the tropical climate in a coupled ocean–atmosphere–land system. J. Climate, 26, 90069025, https://doi.org/10.1175/JCLI-D-12-00819.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahmood, R., and et al. , 2014: Land cover changes and their biogeophysical effects on climate. Int. J. Climatol., 34, 929953, https://doi.org/10.1002/joc.3736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ming, Y., and V. Ramaswamy, 2009: Nonlinear climate and hydrological responses to aerosol effects. J. Climate, 22, 13291339, https://doi.org/10.1175/2008JCLI2362.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ming, Y., V. Ramaswamy, and G. Chen, 2011: A model investigation of aerosol-induced changes in boreal winter extratropical circulation. J. Climate, 24, 60776091, https://doi.org/10.1175/2011JCLI4111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myhre, G., and et al. , 2013: Anthropogenic and natural radiative forcing. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 659–740.

  • Nagendra, H., and J. Southworth, 2009: Reforesting Landscapes: Linking Pattern and Process. Springer, 376 pp.

    • Crossref
    • Export Citation
  • Nair, U. S., Y. Wu, J. Kala, T. J. Lyons, R. A. Pielke, and J. M. Hacker, 2011: The role of land use change on the development and evolution of the west coast trough, convective clouds, and precipitation in southwest Australia. J. Geophys. Res., 116, D07103, https://doi.org/10.1029/2010JD014950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, S. S., and et al. , 2014: Afforestation in China cools local land surface temperature. Proc. Natl. Acad. Sci. USA, 111, 29152919, https://doi.org/10.1073/pnas.1315126111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., and et al. , 2007: An overview of regional land-use and land-cover impacts on rainfall. Tellus, 59B, 587601, https://doi.org/10.1111/j.1600-0889.2007.00251.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., and et al. , 2011: Land use/land cover changes and climate: Modeling analysis and observational evidence. Wiley Interdiscip. Rev.: Climate Change, 2, 828850, https://doi.org/10.1002/wcc.144.

    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., G. T. Narisma, R. A. Pielke, and N. J. Holbrook, 2004: Impact of land cover change on the climate of southwest Western Australia. J. Geophys. Res., 109, D18109, https://doi.org/10.1029/2003JD004347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., and et al. , 2009: Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study. Geophys. Res. Lett., 36, L14814, https://doi.org/10.1029/2009GL039076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quesada, B., N. Devaraju, N. de Noblet-Ducoudre, and A. Arneth, 2017: Reduction of monsoon rainfall in response to past and future land use and land cover changes. Geophys. Res. Lett., 44, 10411050, https://doi.org/10.1002/2016GL070663.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramankutty, N., and J. A. Foley, 1999: Estimating historical changes in global land cover: Croplands from 1700 to 1992. Global Biogeochem. Cycles, 13, 9971027, https://doi.org/10.1029/1999GB900046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rigden, A. J., and D. Li, 2017: Attribution of surface temperature anomalies induced by land use and land cover changes. Geophys. Res. Lett., 44, 68146822, https://doi.org/10.1002/2017GL073811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and et al. , 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151058, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and et al. , 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneck, R., and V. Mosbrugger, 2011: Simulated climate effects of Southeast Asian deforestation: Regional processes and teleconnection mechanisms. J. Geophys. Res., 116, D11116, https://doi.org/10.1029/2010JD015450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., and et al. , 1996: A revised land surface parameterization (SiB2) for atmospheric GCMS. Part I: Model formulation. J. Climate, 9, 676705, https://doi.org/10.1175/1520-0442(1996)009<0676:ARLSPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silva Dias, M. A. F., and et al. , 2002: Cloud and rain processes in a biosphere–atmosphere interaction context in the Amazon region. J. Geophys. Res., 107, 8072, https://doi.org/10.1029/2001JD000335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, P. K., 2010: The influence of tropical deforestation on the Northern Hemisphere climate by atmospheric teleconnections. Earth Interact., 14, https://doi.org/10.1175/2010EI280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, G., 2013: Global and Sahel regional biophysical processes, vegetation dynamics, and climate interactions. Ph.D. dissertation, University of California, Los Angeles, 193 pp.

  • Steyaert, L. T., and R. G. Knox, 2008: Reconstructed historical land cover and biophysical parameters for studies of land–atmosphere interactions within the eastern United States. J. Geophys. Res., 113, D02101, https://doi.org/10.1029/2006JD008277.

    • Search Google Scholar
    • Export Citation
  • Strack, J. E., R. A. Pielke, L. T. Steyaert, and R. G. Knox, 2008: Sensitivity of June near-surface temperatures and precipitation in the eastern United States to historical land cover changes since European settlement. Water Resour. Res., 44, W11401, https://doi.org/10.1029/2007WR006546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swann, A. L. S., I. Y. Fung, and J. C. H. Chiang, 2012: Mid-latitude afforestation shifts general circulation and tropical precipitation. Proc. Natl. Acad. Sci. USA, 109, 712716, https://doi.org/10.1073/pnas.1116706108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomas, R. A., C. Deser, and L. T. Sun, 2016: The role of ocean heat transport in the global climate response to projected Arctic sea ice loss. J. Climate, 29, 68416859, https://doi.org/10.1175/JCLI-D-15-0651.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verhoef, A., H. A. R. DeBruin, and B. J. J. M. VandenHurk, 1997: Some practical notes on the parameter kB−1 for sparse vegetation. J. Appl. Meteor., 36, 560572, https://doi.org/10.1175/1520-0450(1997)036<0560:SPNOTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X. Q., W. D. Guo, B. Qiu, Y. Liu, J. N. Sun, and A. J. Ding, 2017: Quantifying the contribution of land use change to surface temperature in the lower reaches of the Yangtze River. Atmos. Chem. Phys., 17, 49894996, https://doi.org/10.5194/acp-17-4989-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: On “field significance” and the false discovery rate. J. Appl. Meteor. Climatol., 45, 11811189, https://doi.org/10.1175/JAM2404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winckler, J., C. H. Reick, and J. Pongratz, 2017: Robust identification of local biogeophysical effects of land-cover change in a global climate model. J. Climate, 30, 11591176, https://doi.org/10.1175/JCLI-D-16-0067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winckler, J., Q. Lejeune, C. H. Reick, and J. Pongratz, 2019a: Nonlocal effects dominate the global mean surface temperature response to the biogeophysical effects of deforestation. Geophys. Res. Lett., 46, 745755, https://doi.org/10.1029/2018GL080211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winckler, J., and et al. , 2019b: Different response of surface temperature and air temperature to deforestation in climate models. Earth Syst. Dyn., 10, 473484, https://doi.org/10.5194/esd-10-473-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., 2004: The shape of continents, air–sea interaction, and the rising branch of the Hadley circulation. The Hadley Circulation: Present, Past and Future, Springer, 121–152.

    • Crossref
    • Export Citation
  • Xu, Z. F., R. Mahmood, Z. L. Yang, C. B. Fu, and H. Su, 2015: Investigating diurnal and seasonal climatic response to land use and land cover change over monsoon Asia with the Community Earth System Model. J. Geophys. Res. Atmos., 120, 11371152, https://doi.org/10.1002/2014JD022479.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., 1996: The impact of desertification in the Mongolian and the Inner Mongolian grassland on the regional climate. J. Climate, 9, 21732189, https://doi.org/10.1175/1520-0442(1996)009<2173:TIODIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., and J. Shukla, 1993: The influence of land surface properties on Sahel climate. Part 1: Desertification. J. Climate, 6, 22322245, https://doi.org/10.1175/1520-0442(1993)006<2232:TIOLSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., and J. Shukla, 1996: The influence of land surface properties on Sahel climate. Part II. Afforestation. J. Climate, 9, 32603275, https://doi.org/10.1175/1520-0442(1996)009<3260:TIOLSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., P. J. Sellers, J. L. Kinter, and J. Shukla, 1991: A simplified biosphere model for global climate studies. J. Climate, 4, 345364, https://doi.org/10.1175/1520-0442(1991)004<0345:ASBMFG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., J. Elbers, F. Zeng, and A. Dolman, 1997: GCM parameterization for Sahelian land surface processes. HAPEX-Sahel West Central Supersite: Methods, measurements and selected results, Rep. 130.HM/07.97, P. Kabat, S. Prince, and L. Prihodko, Eds., Winand Staring Centre for Integrated Land, Soil and Water Research, 289–297.

  • Xue, Y., H. M. H. Juang, W. P. Li, S. Prince, R. DeFries, Y. Jiao, and R. Vasic, 2004: Role of land surface processes in monsoon development: East Asia and West Africa. J. Geophys. Res., 109, D03105, https://doi.org/10.1029/2003JD003556.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., and et al. , 2016: West African monsoon decadal variability and surface-related forcings: Second West African Monsoon Modeling and Evaluation Project Experiment (WAMME II). Climate Dyn., 47, 35173545, https://doi.org/10.1007/s00382-016-3224-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., and et al. , 2018: Spring land surface and subsurface temperature anomalies and subsequent downstream late spring–summer droughts/floods in North America and East Asia. J. Geophys. Res. Atmos., 123, 50015019, https://doi.org/10.1029/2017JD028246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhan, X. W., Y. K. Xue, and G. J. Collatz, 2003: An analytical approach for estimating CO2 and heat fluxes over the Amazonian region. Ecol. Modell., 162, 97117, https://doi.org/10.1016/S0304-3800(02)00405-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, M., and et al. , 2014: Response of surface air temperature to small-scale land clearing across latitudes. Environ. Res. Lett., 9, 034002, https://doi.org/10.1088/1748-9326/9/3/034002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, L., X. Lee, R. B. Smith, and K. Oleson, 2014: Strong contributions of local background climate to urban heat islands. Nature, 511, 216219, https://doi.org/10.1038/nature13462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., A. J. Pitman, and T. Chase, 2001: The impact of land cover change on the atmospheric circulation. Climate Dyn., 17, 467477, https://doi.org/10.1007/PL00013740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zwiers, F. W., and H. von Storch, 1995: Taking serial correlation into account in tests of the mean. J. Climate, 8, 336351, https://doi.org/10.1175/1520-0442(1995)008<0336:TSCIAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 382 382 47
Full Text Views 98 98 11
PDF Downloads 86 86 14

Assessing Global and Regional Effects of Reconstructed Land-Use and Land-Cover Change on Climate since 1950 Using a Coupled Land–Atmosphere–Ocean Model

View More View Less
  • 1 Department of Geography, University of California, Los Angeles, Los Angeles, California
  • | 2 Department of Geography, and Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California
  • | 3 Department of Geography, University of California, Los Angeles, Los Angeles, California
  • | 4 Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California
  • | 5 Department of Geography, University of California, Los Angeles, Los Angeles, California
© Get Permissions
Restricted access

Abstract

Land-use and land-cover change (LULCC) is one of the most important forcings affecting climate in the past century. This study evaluates the global and regional LULCC impacts in 1950–2015 by employing an annually updated LULCC map in a coupled land–atmosphere–ocean model. The difference between LULCC and control experiments shows an overall land surface temperature (LST) increase by 0.48 K in the LULCC regions and a widespread LST decrease by 0.18 K outside the LULCC regions. A decomposed temperature metric (DTM) is applied to quantify the relative contribution of surface processes to temperature changes. Furthermore, while precipitation in the LULCC areas is reduced in agreement with declined evaporation, LULCC causes a southward displacement of the intertropical convergence zone (ITCZ) with a narrowing by 0.5°, leading to a tripole anomalous precipitation pattern over the warm pool. The DTM shows that the temperature response in LULCC regions results from the competing effect between increased albedo (cooling) and reduced evaporation (warming). The reduced evaporation indicates less atmospheric latent heat release in convective processes and thus a drier and cooler troposphere, resulting in a reduction in surface cooling outside the LULCC regions. The southward shift of the ITCZ implies a northward cross-equatorial energy transport anomaly in response to reduced latent/sensible heat of the atmosphere in the Northern Hemisphere, where LULCC is more intensive. Tropospheric cooling results in the equatorward shift of the upper-tropospheric westerly jet in both hemispheres, which, in turn, leads to an equatorward narrowing of the Hadley circulation and ITCZ.

Corresponding author: Yongkang Xue, yxue@geog.ucla.edu

Abstract

Land-use and land-cover change (LULCC) is one of the most important forcings affecting climate in the past century. This study evaluates the global and regional LULCC impacts in 1950–2015 by employing an annually updated LULCC map in a coupled land–atmosphere–ocean model. The difference between LULCC and control experiments shows an overall land surface temperature (LST) increase by 0.48 K in the LULCC regions and a widespread LST decrease by 0.18 K outside the LULCC regions. A decomposed temperature metric (DTM) is applied to quantify the relative contribution of surface processes to temperature changes. Furthermore, while precipitation in the LULCC areas is reduced in agreement with declined evaporation, LULCC causes a southward displacement of the intertropical convergence zone (ITCZ) with a narrowing by 0.5°, leading to a tripole anomalous precipitation pattern over the warm pool. The DTM shows that the temperature response in LULCC regions results from the competing effect between increased albedo (cooling) and reduced evaporation (warming). The reduced evaporation indicates less atmospheric latent heat release in convective processes and thus a drier and cooler troposphere, resulting in a reduction in surface cooling outside the LULCC regions. The southward shift of the ITCZ implies a northward cross-equatorial energy transport anomaly in response to reduced latent/sensible heat of the atmosphere in the Northern Hemisphere, where LULCC is more intensive. Tropospheric cooling results in the equatorward shift of the upper-tropospheric westerly jet in both hemispheres, which, in turn, leads to an equatorward narrowing of the Hadley circulation and ITCZ.

Corresponding author: Yongkang Xue, yxue@geog.ucla.edu
Save