• Abermann, J., B. Hansen, M. Lund, S. Wacker, M. Karami, and J. Cappelen, 2017: Hotspots and key periods of Greenland climate change during the past six decades. Ambio, 46, 311, https://doi.org/10.1007/s13280-016-0861-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adolph, A. C., M. R. Albert, and D. K. Hall, 2018: Near-surface temperature inversion during summer at Summit, Greenland, and its relation to MODIS-derived surface temperatures. Cryosphere, 12, 907920, https://doi.org/10.5194/tc-12-907-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ahlstrøm, A. P., and Coauthors, 2008: A new programme for monitoring the mass loss of the Greenland ice sheet. Geol. Surv. Denmark Greenl. Bull., 15, 6164, https://doi.org/10.34194/geusb.v15.5045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., S. Hagemann, and K. I. Hodges, 2004: Can climate trends be calculated from reanalysis data? J. Geophys. Res., 109, D11111, https://doi.org/10.1029/2004JD004536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamini, Y., and Y. Hochberg, 1995: Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Stat. Soc., 57B, 289300, https://www.jstor.org/stable/2346101.

    • Search Google Scholar
    • Export Citation
  • Berkelhammer, M., and Coauthors, 2016: Surface–atmosphere decoupling limits accumulation at Summit, Greenland. Sci. Adv., 2, e1501704, https://doi.org/10.1126/sciadv.1501704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bintanja, R., R. G. Graversen, and W. Hazeleger, 2011: Arctic winter warming amplified by the thermal inversion and consequent low infrared cooling to space. Nat. Geosci., 4, 758761, https://doi.org/10.1038/ngeo1285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bintanja, R., E. C. van der Linden, and W. Hazeleger, 2012: Boundary layer stability and Arctic climate change: A feedback study using EC-Earth. Climate Dyn., 39, 26592673, https://doi.org/10.1007/s00382-011-1272-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boé, J., A. Hall, and X. Qu, 2009: Current GCMs’ unrealistic negative feedback in the Arctic. J. Climate, 22, 46824695, https://doi.org/10.1175/2009JCLI2885.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bradley, R. S., F. T. Keimig, and H. F. Diaz, 1992: Climatology of surface-based inversions in the North American Arctic. J. Geophys. Res., 97, 15 69915 712, https://doi.org/10.1029/92JD01451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bradley, R. S., F. T. Keimig, and H. F. Diaz, 1993: Recent changes in the North American Arctic boundary layer in winter. J. Geophys. Res., 98, 88518858, https://doi.org/10.1029/93JD00311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bridgman, H. A., R. C. Schnell, J. D. Kahl, G. A. Herbert, and E. Joranger, 1989: A major haze event near Point Barrow, Alaska: Analysis of probable source regions and transport pathways. Atmos. Environ., 23, 25372549, https://doi.org/10.1016/0004-6981(89)90265-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Busch, N., U. Ebel, H. Kraus, and E. Schaller, 1982: The structure of the subpolar inversion-capped ABL. Arch. Meteor. Geophys. Bioclimatol., 31A, 118, https://doi.org/10.1007/BF02257738.

    • Search Google Scholar
    • Export Citation
  • Cappelen, J., B. V. Jørgensen, E. V. Laursen, L. S. Stannius, and R. S. Thomsen, 2001: The observed climate of Greenland, 1958–99, with climatological standard normals, 1961–90. DMI Tech. Rep. 0018, 152 pp., https://www.dmi.dk/fileadmin/user_upload/Rapporter/TR/2000/tr00-18.pdf.

  • Chutko, K. J., and S. F. Lamoureux, 2009: The influence of low-level thermal inversions on estimated melt-season characteristics in the central Canadian Arctic. Int. J. Climatol., 29, 259268, https://doi.org/10.1002/joc.1722.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and S. Uppala, 2009: Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Quart. J. Roy. Meteor. Soc., 135, 18301841, https://doi.org/10.1002/qj.493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delhasse, A., C. Kittel, C. Amory, S. Hofer, D. van As, R. S. Fausto, and X. Fettweis, 2020: Brief communication: Evaluation of the near-surface climate in ERA5 over the Greenland Ice Sheet. Cryosphere, 14, 957965, https://doi.org/10.5194/tc-14-957-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durre, I., and X. Yin, 2008: Enhanced radiosonde data for studies of vertical structure. Bull. Amer. Meteor. Soc., 89, 12571262, https://doi.org/10.1175/2008BAMS2603.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ECMWF, 2016: Part IV: Physical processes. IFS Documentation CY43R1, ECMWF, 223 pp., https://www.ecmwf.int/node/17117.

  • Gao, L., M. Bernhardt, and K. Schulz, 2012: Elevation correction of ERA-Interim temperature data in complex terrain. Hydrol. Earth Syst. Sci., 16, 46614673, https://doi.org/10.5194/hess-16-4661-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilson, G. F., H. Jiskoot, J. J. Cassano, I. Gultepe, and T. D. James, 2018a: The thermodynamic structure of Arctic coastal fog occurring during the melt season over East Greenland. Bound.-Layer Meteor., 168, 443467, https://doi.org/10.1007/s10546-018-0357-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilson, G. F., H. Jiskoot, J. J. Cassano, and T. R. Nielsen, 2018b: Radiosonde-derived temperature inversions and their association with fog over 37 melt seasons in East Greenland. J. Geophys. Res. Atmos., 123, 95719588, https://doi.org/10.1029/2018JD028886.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Good, E. J., 2016: An in situ-based analysis of the relationship between land surface “skin” and screen-level air temperatures. J. Geophys. Res. Atmos., 121, 88018819, https://doi.org/10.1002/2016JD025318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graham, R. M., S. R. Hudson, and M. Maturilli, 2019: Improved performance of ERA5 in Arctic gateway relative to four global atmospheric reanalyses. Geophys. Res. Lett., 46, 61386147, https://doi.org/10.1029/2019GL082781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., T. Mauritsen, M. Tjernström, E. Källén, and G. Svensson, 2008: Vertical structure of recent Arctic warming. Nature, 451, 5356, https://doi.org/10.1038/nature06502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haimberger, L., 2007: Homogenization of radiosonde temperature time series using innovation statistics. J. Climate, 20, 13771403, https://doi.org/10.1175/JCLI4050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, D. K., J. E. Box, K. A. Casey, S. J. Hook, C. A. Shuman, and K. Steffen, 2008: Comparison of satellite-derived and in-situ observations of ice and snow surface temperatures over Greenland. Remote Sens. Environ., 112, 37393749, https://doi.org/10.1016/j.rse.2008.05.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanna, E., T. E. Cropper, R. J. Hall, and J. Cappelen, 2016: Greenland blocking index 1851–2015: A regional climate change signal. Int. J. Climatol., 36, 48474861, https://doi.org/10.1002/joc.4673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hennermann, K., and M. Giusti, 2018: What are the changes from ERA-Interim to ERA5? ECMWF, https://confluence.ecmwf.int/pages/viewpage.action?pageId=74764925.

  • Hersbach, H., and D. Dee, 2016: ERA5 reanalysis is in production. ECMWF Newsletter, No. 147, ECMWF, Reading, United Kingdom, 7, http://www.ecmwf.int/sites/default/files/elibrary/2016/16299-newsletter-no147-spring-2016.pdf.

  • Hibler, W. D., III, and K. Bryan, 1987: A diagnostic ice–ocean model. J. Phys. Oceanogr., 17, 9871015, https://doi.org/10.1175/1520-0485(1987)017<0987:ADIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hofer, S., A. J. Tedstone, X. Fettweis, and J. L. Bamber, 2017: Decreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet. Sci. Adv., 3, e1700584, https://doi.org/10.1126/sciadv.1700584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hudson, S. R., and R. E. Brandt, 2005: A look at the surface-based temperature inversion on the Antarctic Plateau. J. Climate, 18, 16731696, https://doi.org/10.1175/JCLI3360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hulth, J., C. Rolstad, K. Trondsen, and R. W. Rødby, 2010: Surface mass and energy balance of Sørbreen, Jan Mayen, 2008. Ann. Glaciol., 51, 110119, https://doi.org/10.3189/172756410791392754.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahl, J. D., 1990: Characteristics of the low-level temperature inversion along the Alaskan Arctic coast. Int. J. Climatol., 10, 537548, https://doi.org/10.1002/joc.3370100509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahl, J. D., M. C. Serreze, and R. C. Schnell, 1992: Tropospheric low-level temperature inversions in the Canadian Arctic. Atmos.–Ocean, 30, 511529, https://doi.org/10.1080/07055900.1992.9649453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahl, J. D., D. A. Martinez, and N. A. Zaitseva, 1996: Long-term variability in the low-level inversion layer over the Arctic Ocean. Int. J. Climatol., 16, 12971313, https://doi.org/10.1002/(SICI)1097-0088(199611)16:11<1297::AID-JOC86>3.0.CO;2-T.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laprise, R., 1992: The resolution of global spectral models. Bull. Amer. Meteor. Soc., 73, 14531455, https://doi.org/10.1175/1520-0477-73.9.1453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, R., M. Wensnahan, A. Schweiger, and J. Zhang, 2014: Evaluation of seven different atmospheric reanalysis products in the Arctic. J. Climate, 27, 25882606, https://doi.org/10.1175/JCLI-D-13-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medeiros, B., C. Deser, R. A. Tomas, and J. E. Kay, 2011: Arctic inversion strength in climate models. J. Climate, 24, 47334740, https://doi.org/10.1175/2011JCLI3968.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., and G. E. Liston, 2010: The influence of air temperature inversions on snowmelt and glacier mass balance simulations, Ammassalik Island, southeast Greenland. J. Appl. Meteor. Climatol., 49, 4767, https://doi.org/10.1175/2009JAMC2065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., B. U. Hansen, B. H. Jakobsen, and B. Hasholt, 2008: Climatic conditions at the Mittivakkat Glacier catchment (1994–2006), Ammassalik Island, SE Greenland, and in a 109-year perspective (1898–2006). Dan. J. Geogr., 108, 5172, https://doi.org/10.1080/00167223.2008.10649574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, N. B., D. D. Turner, R. Bennartz, M. D. Shupe, M. S. Kulie, M. P. Cadeddu, and V. P. Walden, 2013: Surface-based inversions above central Greenland. J. Geophys. Res. Atmos., 118, 495506, https://doi.org/10.1029/2012JD018867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, N. B., M. D. Shupe, C. J. Cox, V. P. Walden, D. D. Turner, and K. Steffen, 2015: Cloud radiative forcing at Summit, Greenland. J. Climate, 28, 62676280, https://doi.org/10.1175/JCLI-D-15-0076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nielsen-Englyst, P., J. L. Høyer, K. S. Madsen, G. Dybkjær, R. Tonboe, and E. Alerskans, 2019: In situ observed relationships between snow and ice surface skin temperatures and 2 m air temperatures in the Arctic. Cryosphere, 13, 10051024, https://doi.org/10.5194/tc-13-1005-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niwano, M., A. Hashimoto, and T. Aoki, 2019: Cloud-driven modulations of Greenland ice sheet surface melt. Sci. Rep., 9, 10380, https://doi.org/10.1038/s41598-019-46152-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noël, B., W. J. van de Berg, S. Lhermitte, and M. R. van den Broeke, 2019: Rapid ablation zone expansion amplifies north Greenland mass loss. Sci. Adv., 5, eaaw0123, https://doi.org/10.1126/sciadv.aaw0123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onogi, K., and Coauthors, 2007: The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85, 369432, https://doi.org/10.2151/jmsj.85.369.

  • Overland, J. E., and K. L. Davidson, 1992: Geostrophic drag coefficients over sea ice. Tellus, 44A, 5466, https://doi.org/10.3402/tellusa.v44i1.17118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palarz, A., D. Celiński-Mysław, and Z. Ustrnul, 2018: Temporal and spatial variability of surface-based inversions over Europe based on ERA-Interim reanalysis. Int. J. Climatol., 38, 158168, https://doi.org/10.1002/joc.5167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palo, T., T. Vihma, J. Jaagus, and E. Jakobson, 2017: Observations of temperature inversions over central Arctic sea ice in summer. Quart. J. Roy. Meteor. Soc., 143, 27412754, https://doi.org/10.1002/qj.3123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pavelsky, T. M., J. Boé, A. Hall, and E. J. Fetzer, 2011: Atmospheric inversion strength over polar oceans in winter regulated by sea ice. Climate Dyn., 36, 945955, https://doi.org/10.1007/s00382-010-0756-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pithan, F., and T. Mauritsen, 2013: Comments on “Current GCM’s unrealistic negative feedback in the Arctic.” J. Climate, 26, 77837788, https://doi.org/10.1175/JCLI-D-12-00331.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Przybylak, R., 2016: The Climate of the Arctic. 2nd ed. Springer, 287 pp.

    • Crossref
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 13341337, https://doi.org/10.1038/nature09051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., R. C. Schnell, and J. D. Kahl, 1992: Low-level temperature inversions of the Eurasian Arctic and comparisons with Soviet drifting station data. J. Climate, 5, 615629, https://doi.org/10.1175/1520-0442(1992)005<0615:LLTIOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and P. Poli, 2015: Arctic warming in ERA-Interim and other analyses. Quart. J. Roy. Meteor. Soc., 141, 11471162, https://doi.org/10.1002/qj.2422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steffen, K., 1995: Surface energy exchange at the equilibrium line on the Greenland ice sheet during onset of melt. Ann. Glaciol., 21, 1318, https://doi.org/10.3189/S0260305500015536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steffen, K., and J. Box, 2001: Surface climatology of the Greenland Ice Sheet: Greenland climate network 1995–1999. J. Geophys. Res., 106, 33 95133 964, https://doi.org/10.1029/2001JD900161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stendel, M., J. H. Christensen, and D. Petersen, 2008: Arctic climate and climate change with a focus on Greenland. High Arctic Ecosystem Dynamics in a Changing Climate: Ten Years of Monitoring and Research at Zackenberg Research Station, Northeast Greenland, Advances in Ecological Research Series, Vol. 40, Elsevier, 13–43.

    • Crossref
    • Export Citation
  • Tiedtke, M., 1993: Representation of clouds in large-scale models. Mon. Wea. Rev., 121, 30403061, https://doi.org/10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tjernström, M., and R. G. Graversen, 2009: The vertical structure of the lower Arctic troposphere analysed from observations and the ERA-40 reanalysis. Quart. J. Roy. Meteor. Soc., 135, 431443, https://doi.org/10.1002/qj.380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tjernström, M., and Coauthors, 2012: Meteorological conditions in the central Arctic summer during the Arctic Summer Cloud Ocean Study (ASCOS). Atmos. Chem. Phys., 12, 68636889, https://doi.org/10.5194/acp-12-6863-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tjernström, M., and Coauthors, 2015: Warm-air advection, air mass transformation and fog causes rapid ice melt. Geophys. Res. Lett., 42, 55945602, https://doi.org/10.1002/2015GL064373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turton, J. V., T. Mölg, and D. van As, 2019: Atmospheric processes and climatological characteristics of the 79N glacier (northeast Greenland). Mon. Wea. Rev., 147, 13751394, https://doi.org/10.1175/MWR-D-18-0366.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van As, D., 2011: Warming, glacier melt and surface energy budget from weather station observations in the Melville Bay region of northwest Greenland. J. Glaciol., 57, 208220, https://doi.org/10.3189/002214311796405898.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Broeke, M., P. Smeets, and J. Ettema, 2009: Surface layer climate and turbulent exchange in the ablation zone of the west Greenland ice sheet. Int. J. Climatol., 29, 23092323, https://doi.org/10.1002/joc.1815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walden, V. P., A. Mahesh, and S. G. Warren, 1996: Comment on “Recent changes in the North American Arctic boundary layer in winter” by R. S. Bradley et al. J. Geophys. Res., 101, 71277134, https://doi.org/10.1029/95JD03233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., and W. L. Chapman, 1998: Arctic cloud–radiation–temperature associations in observational data and atmospheric reanalyses. J. Climate, 11, 30303045, https://doi.org/10.1175/1520-0442(1998)011<3030:ACRTAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., W. L. Chapman, and D. H. Portis, 2009: Arctic cloud fraction and radiative fluxes in atmospheric reanalyses. J. Climate, 22, 23162334, https://doi.org/10.1175/2008JCLI2213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westergaard-Nielsen, A., M. Karami, B. U. Hansen, S. Westermann, and B. Elberling, 2018: Contrasting temperature trends across the ice-free part of Greenland. Sci. Rep., 8, 1586, https://doi.org/10.1038/s41598-018-19992-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wetzel, C., and B. Brümmer, 2011: An Arctic inversion climatology based on the European Centre Reanalysis ERA-40. Meteor. Z., 20, 589600, https://doi.org/10.1127/0941-2948/2011/0295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and D. J. Seidel, 2011: Challenges in estimating trends in Arctic surface-based inversions from radiosonde data. Geophys. Res. Lett., 38, L17806, https://doi.org/10.1029/2011GL048728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., D. J. Seidel, J. C. Golaz, C. Deser, and R. A. Tomas, 2011: Climatological characteristics of Arctic and Antarctic surface-based inversions. J. Climate, 24, 51675186, https://doi.org/10.1175/2011JCLI4004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 132 132 75
Full Text Views 18 18 7
PDF Downloads 24 24 5

Regional Variability and Trends of Temperature Inversions in Greenland

View More View Less
  • 1 Department of Geography and Regional Science, University of Graz, Graz, Austria
  • 2 Department of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck, Austria
  • 3 Department of Geography and Regional Science, University of Graz, Graz, Austria
© Get Permissions
Restricted access

Abstract

Strong and thick temperature inversions are key components of the Arctic climate system and it is important to study and better understand them. The present study quantifies the temporal and spatial variability of surface-based inversions (SBIs) and elevated inversions (EIs) over Greenland, as derived from the ERA-Interim (ERA-I) dataset for the period 1979–2017. The seasonal and multiannual variability of inversion strength, thickness, and frequency are examined. Our results clearly show regional as well as seasonal patterns of both SBIs and EIs. SBIs are more frequent and stronger than EIs, and the spatial variability of inversions is larger during winter and smaller during summer. Furthermore, during summer, there has been a trend toward stronger (0.3 K decade−1), thicker (12 m decade−1), and more frequent (3% decade−1) SBIs in the southern part of Greenland, especially in the past two decades. Evidently, the strengthening of the anticyclone over Greenland causes a reduction of cloud cover, which manifests in an increase in SBI strength and thickness, particularly in the southern part of Greenland.

Denotes content that is immediately available upon publication as open access.

Corresponding author: Sonika Shahi, sonika.shahi@uni-graz.at

Abstract

Strong and thick temperature inversions are key components of the Arctic climate system and it is important to study and better understand them. The present study quantifies the temporal and spatial variability of surface-based inversions (SBIs) and elevated inversions (EIs) over Greenland, as derived from the ERA-Interim (ERA-I) dataset for the period 1979–2017. The seasonal and multiannual variability of inversion strength, thickness, and frequency are examined. Our results clearly show regional as well as seasonal patterns of both SBIs and EIs. SBIs are more frequent and stronger than EIs, and the spatial variability of inversions is larger during winter and smaller during summer. Furthermore, during summer, there has been a trend toward stronger (0.3 K decade−1), thicker (12 m decade−1), and more frequent (3% decade−1) SBIs in the southern part of Greenland, especially in the past two decades. Evidently, the strengthening of the anticyclone over Greenland causes a reduction of cloud cover, which manifests in an increase in SBI strength and thickness, particularly in the southern part of Greenland.

Denotes content that is immediately available upon publication as open access.

Corresponding author: Sonika Shahi, sonika.shahi@uni-graz.at
Save