• Andrews, T., J. M. Gregory, and M. J. Webb, 2015: The dependence of radiative forcing and feedback on evolving patterns of surface temperature change in climate models. J. Climate, 28, 16301648, https://doi.org/10.1175/JCLI-D-14-00545.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armour, K. C., J. Marshall, A. Donohoe, and E. R. Newsom, 2016: Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat. Geosci., 9, 549554, https://doi.org/10.1038/ngeo2731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bakun, A., B. A. Black, S. J. Bograd, M. García-Reyes, A. J. Miller, R. R. Rykaczewski, and W. J. Sydeman, 2015: Anticipated effects of climate change on coastal upwelling ecosystems. Curr. Climate Change Rep., 1, 8593, https://doi.org/10.1007/s40641-015-0008-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banks, H. T., and J. M. Gregory, 2006: Mechanisms of ocean heat uptake in a coupled climate model and the implications for tracer based predictions of ocean heat uptake. Geophys. Res. Lett., 33, L07608, https://doi.org/10.1029/2005GL025352.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barton, E. D., D. B. Field, and C. Roy, 2013: Canary Current upwelling: More or less? Prog. Oceanogr., 116, 167178, https://doi.org/10.1016/j.pocean.2013.07.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bi, D., and Coauthors, 2013: ACCESS-OM: The ocean and sea-ice core of the ACCESS coupled model. Aust. Meteor. Oceanogr. J., 63, 213232, https://doi.org/10.22499/2.6301.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Böning, C. W., A. Dispert, M. Visbeck, S. R. Rintoul, and F. U. Schwarzkopf, 2008: The response of the Antarctic Circumpolar Current to recent climate change. Nat. Geosci., 1, 864869, https://doi.org/10.1038/ngeo362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouttes, N., and J. M. Gregory, 2014: Attribution of the spatial pattern of CO2-forced sea level change to ocean surface flux changes. Environ. Res. Lett., 9, 034004, https://doi.org/10.1088/1748-9326/9/3/034004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brochier, T., V. Echevin, J. Tam, A. Chaigneau, K. Goubanova, and A. Bertrand, 2013: Climate change scenarios experiments predict a future reduction in small pelagic fish recruitment in the Humboldt Current system. Global Change Biol., 19, 18411853, https://doi.org/10.1111/gcb.12184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buongiorno Nardelli, B., S. Guinehut, N. Verbrugge, Y. Cotroneo, E. Zambianchi, and D. Iudicone, 2017: Southern Ocean mixed-layer seasonal and interannual variations from combined satellite and in situ data. J. Geophys. Res. Oceans, 122, 10 04210 060, https://doi.org/10.1002/2017JC013314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cazenave, A., and Coauthors, 2018: Global sea-level budget 1993–present. Earth Syst. Sci. Data, 10, 15511590, https://doi.org/10.5194/essd-10-1551-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C., G. Wang, S.-P. Xie, and W. Liu, 2019: Why does global warming weaken the Gulf Stream but intensify the Kuroshio? J. Climate, 32, 74377451, https://doi.org/10.1175/JCLI-D-18-0895.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., A. K. Morrison, C. O. Dufour, and J. L. Sarmiento, 2019: Deciphering patterns and drivers of heat and carbon storage in the Southern Ocean. Geophys. Res. Lett., 46, 33593367, https://doi.org/10.1029/2018GL080961.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Church, J. A., J. S. Godfrey, D. R. Jackett, and T. J. McDougall, 1991: A model of sea level rise caused by ocean thermal expansion. J. Climate, 4, 438456, https://doi.org/10.1175/1520-0442(1991)004<0438:AMOSLR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Church, J. A., D. Monselesan, J. M. Gregory, and B. Marzeion, 2013: Evaluating the ability of process based models to project sea-level change. Environ. Res. Lett., 8, 014051, https://doi.org/10.1088/1748-9326/8/1/014051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and Coauthors, 2014: North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part I: Mean states. Ocean Modell., 73, 76107, https://doi.org/10.1016/j.ocemod.2013.10.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Boer, A. M., R. M. Graham, M. D. Thomas, and K. E. Kohfeld, 2013: The control of the Southern Hemisphere westerlies on the position of the subtropical front. J. Geophys. Res. Oceans, 118, 56695675, https://doi.org/10.1002/jgrc.20407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demarcq, H., 2009: Trends in primary production, sea surface temperature and wind in upwelling systems (1998–2007). Prog. Oceanogr., 83, 376385, https://doi.org/10.1016/j.pocean.2009.07.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dias, F. B., C. M. Domingues, S. J. Marsland, S. M. Griffies, S. R. Rintoul, R. Matear, and R. Fiedler, 2020: On the superposition of mean advective and eddy-induced transports in global ocean heat and salt budgets. J. Climate, 33, 11211140, https://doi.org/10.1175/JCLI-D-19-0418.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Domingues, C. M., J. A. Church, N. J. White, P. J. Gleckler, S. E. Wijffels, P. M. Barker, and J. R. Dunn, 2008: Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature, 453, 10901093, https://doi.org/10.1038/nature07080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, S., J. Sprintall, S. T. Gille, and L. Talley, 2008: Southern Ocean mixed-layer depth from Argo float profiles. J. Geophys. Res, 113, C06013, https://doi.org/10.1029/2006JC004051.

    • Search Google Scholar
    • Export Citation
  • Downes, S. M., and A. M. Hogg, 2013: Southern Ocean circulation and eddy compensation in CMIP5 models. J. Climate, 26, 71987220, https://doi.org/10.1175/JCLI-D-12-00504.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Downes, S. M., and Coauthors, 2015: An assessment of Southern Ocean water masses and sea ice during 1988–2007 in a suite of interannual CORE-II simulations. Ocean Modell., 94, 6794, https://doi.org/10.1016/j.ocemod.2015.07.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dufresne, J. L., and Coauthors, 2013: Climate change projections using the IPSL-CM5 Earth system model: From CMIP3 to CMIP5. Climate Dyn., 40, 21232165, https://doi.org/10.1007/s00382-012-1636-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Exarchou, E., T. Kuhlbrodt, J. M. Gregory, and R. S. Smith, 2015: Ocean heat uptake processes: A model intercomparison. J. Climate, 28, 887908, https://doi.org/10.1175/JCLI-D-14-00235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farneti, R., and T. L. Delworth, 2010: The role of mesoscale eddies in the remote oceanic response to altered Southern Hemisphere winds. J. Phys. Oceanogr., 40, 23482354, https://doi.org/10.1175/2010JPO4480.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farneti, R., and Coauthors, 2015: An assessment of Antarctic Circumpolar Current and Southern Ocean meridional overturning circulation during 1958–2007 in a suite of interannual CORE-II simulations. Ocean Modell., 93, 84120, https://doi.org/10.1016/j.ocemod.2015.07.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., and Coauthors, 2011: Parameterization of mixed layer eddies. III: Implementation and impact in global ocean climate simulations. Ocean Modell., 39, 6178, https://doi.org/10.1016/j.ocemod.2010.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankcombe, L. M., P. Spence, A. M. Hogg, M. H. England, and S. M. Griffies, 2013: Sea level changes forced by Southern Ocean winds. Geophys. Res. Lett., 40, 57105715, https://doi.org/10.1002/2013GL058104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freeman, N. M., N. S. Lovenduski, and P. R. Gent, 2016: Temporal variability in the Antarctic Polar Front (2002–2014). J. Geophys. Res. Oceans, 121, 72637276, https://doi.org/10.1002/2016JC012145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., 2003: Large-scale mass transports, water mass formation, and diffusivities estimated from World Ocean Circulation Experiment (WOCE) hydrographic data. J. Geophys. Res., 108, 3213, https://doi.org/10.1029/2002JC001565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García-Reyes, M., W. J. Sydeman, D. S. Schoeman, R. R. Rykaczewski, B. A. Black, A. J. Smit, and S. J. Bograd, 2015: Under pressure: Climate change, upwelling, and eastern boundary upwelling ecosystems. Front. Mar. Sci., 2, 109, https://doi.org/10.3389/fmars.2015.00109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garuba, O. A., and B. A. Klinger, 2016: Ocean heat uptake and interbasin transport of the passive and redistributive components of surface heating. J. Climate, 29, 75077527, https://doi.org/10.1175/JCLI-D-16-0138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garuba, O. A., and B. A. Klinger, 2018: The role of individual surface flux components in the passive and active ocean heat uptake. J. Climate, 31, 61576173, https://doi.org/10.1175/JCLI-D-17-0452.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garuba, O. A., J. Lu, F. Liu, and H. A. Singh, 2018: The active role of the ocean in the temporal evolution of climate sensitivity. Geophys. Res. Lett., 45, 306315, https://doi.org/10.1002/2017GL075633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., J. Willebrand, T. J. McDougall, and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25, 463474, https://doi.org/10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., R. D. Slater, P. S. Swathi, and G. K. Vallis, 2005: The energetics of ocean heat transport. J. Climate, 18, 26042616, https://doi.org/10.1175/JCLI3436.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graham, R. M., A. M. De Boer, K. J. Heywood, M. R. Chapman, and D. P. Stevens, 2012: Southern Ocean fronts: Controlled by wind or topography? J. Geophys. Res., 117, C08018, https://doi.org/10.1029/2012JC007887.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., 2000: Vertical heat transports in the ocean and their effect on time-dependent climate change. Climate Dyn., 16, 501515, https://doi.org/10.1007/s003820000059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and Coauthors, 2016: The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) contribution to CMIP6: Investigation of sea-level and ocean climate change in response to CO2 forcing. Geosci. Model Dev. Discuss., 9, 39934017, https://doi.org/10.5194/gmd-9-3993-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., A. Gnanadesikan, R. C. Pacanowski, V. D. Larichev, J. K. Dukowicz, and R. D. Smith, 1998: Isoneutral diffusion in a z-coordinate ocean model. J. Phys. Oceanogr., 28, 805830, https://doi.org/10.1175/1520-0485(1998)028<0805:IDIAZC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2009: Coordinated Ocean-ice Reference Experiments (COREs). Ocean Modell., 26, 146, https://doi.org/10.1016/j.ocemod.2008.08.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2015: Impacts on ocean heat from transient mesoscale eddies in a hierarchy of climate models. J. Climate, 28, 952977, https://doi.org/10.1175/JCLI-D-14-00353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2016: OMIP contribution to CMIP6: Experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project. Geosci. Model Dev. Discuss., 9, 32313296, https://doi.org/10.5194/gmd-9-3231-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gruber, N., 2011: Warming up, turning sour, losing breath: Ocean biogeochemistry under global change. Philos. Trans. Roy. Soc. London, A369, 19801996, https://doi.org/10.1098/rsta.2011.0003.

    • Search Google Scholar
    • Export Citation
  • Gutiérrez, D., and Coauthors, 2011: Coastal cooling and increased productivity in the main upwelling zone off Peru since the mid-twentieth century. Geophys. Res. Lett., 38, L07603, https://doi.org/10.1029/2010GL046324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., M. Winton, K. Takahashi, T. Delworth, F. Zeng, and G. K. Vallis, 2010: Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing. J. Climate, 23, 24182427, https://doi.org/10.1175/2009JCLI3466.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hieronymus, M., and J. Nycander, 2013: The budgets of heat and salinity in NEMO. Ocean Modell., 67, 2838, https://doi.org/10.1016/j.ocemod.2013.03.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes, R. M., J. D. Zika, R. Ferrari, A. F. Thompson, E. R. Newsom, and M. H. England, 2019: Atlantic Ocean heat transport enabled by Indo-Pacific heat uptake and mixing. Geophys. Res. Lett., 46, 13 93913 949, https://doi.org/10.1029/2019GL085160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huber, M. B., and L. Zanna, 2017: Drivers of uncertainty in simulated ocean circulation and heat uptake. Geophys. Res. Lett., 44, 14021413, https://doi.org/10.1002/2016GL071587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackett, D. R., T. J. McDougall, M. H. England, and A. C. Hirst, 2000: Thermal expansion in ocean and coupled general circulation models. J. Climate, 13, 13841405, https://doi.org/10.1175/1520-0442(2000)013<1384:TEIOAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jansen, M. F., L. P. Nadeau, and T. M. Merlis, 2018: Transient versus equilibrium response of the ocean’s overturning circulation to warming. J. Climate, 31, 51475163, https://doi.org/10.1175/JCLI-D-17-0797.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katavouta, A., R. G. Williams, and P. Goodwin, 2019: The effect of ocean ventilation on the transient climate response to emissions. J. Climate, 32, 50855105, https://doi.org/10.1175/JCLI-D-18-0829.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiss, A. E., and Coauthors, 2020: ACCESS-OM2 v1.0: A global ocean–sea ice model at three resolutions. Geosci. Model Dev., 13, 401442, https://doi.org/10.5194/gmd-13-401-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klinger, B. A., J. Marshall, and U. Send, 1996: Representation of convective plumes by vertical adjustment. J. Geophys. Res., 101, 18 17518 182, https://doi.org/10.1029/96JC00861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuhlbrodt, T., and J. M. Gregory, 2012: Ocean heat uptake and its consequences for the magnitude of sea level rise and climate change. Geophys. Res. Lett., 39, L18608, https://doi.org/10.1029/2012GL052952.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuhlbrodt, T., J. M. Gregory, and L. C. Shaffrey, 2015: A process-based analysis of ocean heat uptake in an AOGCM with an eddy-permitting ocean component. Climate Dyn., 45, 32053226, https://doi.org/10.1007/s00382-015-2534-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary-layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q., Y. Luo, and F. Liu, 2019: Response of the subtropical gyre circulation in the North Pacific Ocean to CO2 quadrupling. Atmos.–Ocean, 57, 307317, https://doi.org/10.1080/07055900.2019.1666701.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lowe, J. A., and J. M. Gregory, 2006: Understanding projections of sea level rise in a Hadley Centre coupled climate model. J. Geophys. Res., 111, C11014, https://doi.org/10.1029/2005JC003421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, Y., J. Lu, F. Liu, and W. Liu, 2015: Understanding the El Niño–like oceanic response in the tropical Pacific to global warming. Climate Dyn., 45, 19451964, https://doi.org/10.1007/s00382-014-2448-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, Y., F. Liu, and J. Lu, 2018: Response of the equatorial Pacific thermocline to climate warming. Ocean Dyn., 68, 14191429, https://doi.org/10.1007/s10236-018-1209-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., J. R. Scott, K. C. Armour, J. M. C. Maxwell, and K. Anastasia, 2015: The ocean’s role in the transient response of climate to abrupt greenhouse gas forcing. Climate Dyn., 44, 22872299, https://doi.org/10.1007/s00382-014-2308-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Megann, A., and Coauthors, 2014: GO5.0: The joint NERC–Met Office NEMO global ocean model for use in coupled and forced applications. Geosci. Model Dev., 7, 10691092, https://doi.org/10.5194/gmd-7-1069-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meijers, A. J., E. Shuckburgh, N. Bruneau, J. B. Sallee, T. J. Bracegirdle, and Z. Wang, 2012: Representation of the Antarctic Circumpolar Current in the CMIP5 climate models and future changes under warming scenarios. J. Geophys. Res., 117, C12008, https://doi.org/10.1029/2012JC008412.

    • Search Google Scholar
    • Export Citation
  • Meinen, C. S., S. L. Garzoli, R. C. Perez, E. Campos, A. R. Piola, M. P. Chidichimo, S. Dong, and O. T. Sato, 2017: Characteristics and causes of deep western boundary current transport variability at 34.5°S during 2009–2014. Ocean Sci., 13, 175194, https://doi.org/10.5194/os-13-175-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyssignac, B., and Coauthors, 2019: Measuring global ocean heat content to estimate the Earth energy imbalance. Front. Mar. Sci., 6, 432, https://doi.org/10.3389/fmars.2019.00432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, A. K., O. Saenko, A. M. Hogg, and P. Spence, 2013: The role of vertical eddy flux in Southern Ocean heat uptake. Geophys. Res. Lett., 40, 54455450, https://doi.org/10.1002/2013GL057706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, A. K., S. M. Griffies, M. Winton, W. G. Anderson, and J. L. Sarmiento, 2016: Mechanisms of Southern Ocean heat uptake and transport in a global eddying climate model. J. Climate, 29, 20592075, https://doi.org/10.1175/JCLI-D-15-0579.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagata, Y., Y. Michida, and Y. Umimura, 1988: Variations of positions and structures of the ocean fronts in the Indian Ocean sector of the Southern Ocean. Antarctic Ocean and Resources Variability, D. Sahrhage, Ed., Springer-Verlag, 92–98.

    • Crossref
    • Export Citation
  • Oppenheimer, M., and Coauthors, 2019: Sea level rise and implications for low lying islands, coasts and communities. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, H.-O. Pörtner et al., Eds., Cambridge University Press, https://www.ipcc.ch/srocc/chapter/chapter-4-sea-level-rise-and-implications-for-low-lying-islands-coasts-and-communities/.

  • Palter, J. B., S. M. Griffies, B. L. Samuels, E. D. Galbraith, A. Gnanadesikan, and A. Klocker, 2014: The deep ocean buoyancy budget and its temporal variability. J. Climate, 27, 551573, https://doi.org/10.1175/JCLI-D-13-00016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pellichero, V., J. B. Sallée, C. C. Chapman, and S. M. Downes, 2018: The Southern Ocean meridional overturning in the sea-ice sector is driven by freshwater fluxes. Nat. Commun., 9, 1789, https://doi.org/10.1038/s41467-018-04101-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pontes, G. M., A. Sen Gupta, and A. S. Taschetto, 2016: Projected changes to South Atlantic boundary currents and confluence region in the CMIP5 models: The role of wind and deep ocean changes. Environ. Res. Lett., 11, 094013, https://doi.org/10.1088/1748-9326/11/9/094013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, T., I. Fukumori, and R. A. Fine, 2019: Spin-up of the Southern Hemisphere super gyre. J. Geophys. Res. Oceans, 124, 154170, https://doi.org/10.1029/2018JC014391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Redi, M., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 11541158, https://doi.org/10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhein, M., and Coauthors, 2013: Observations: Ocean. Climate Change 2013: The Physical Science Basis, T. Stocker et al., Eds., Cambridge University Press, 33–115, https://doi.org/10.1017/CBO9781107415324.005.

    • Crossref
    • Export Citation
  • Richter, I., 2015: Climate model biases in the eastern tropical oceans: Causes, impacts and ways forward. Wiley Interdiscip. Rev.: Climate Change, 6, 345358, https://doi.org/10.1002/WCC.338.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., J. Church, J. Gilson, D. Monselesan, P. Sutton, and S. Wijffels, 2015: Unabated planetary warming and its ocean structure since 2006. Nat. Climate Change, 5, 240245, https://doi.org/10.1038/nclimate2513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rykaczewski, R. R., J. P. Dunne, W. J. Sydeman, M. García-Reyes, B. A. Black, and S. J. Bograd, 2015: Poleward displacement of coastal upwelling-favorable winds in the ocean’s eastern boundary currents through the 21st century. Geophys. Res. Lett., 42, 64246431, https://doi.org/10.1002/2015GL064694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saenko, O. A., D. Yang, J. M. Gregory, P. Spence, and P. Myers, 2015: Separating the influence of projected changes in air temperature and wind on patterns of sea level change and ocean heat content. J. Geophys. Res. Oceans, 120, 57495765, https://doi.org/10.1002/2015JC010928.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sallée, J., E. Shuckburgh, N. Bruneau, A. J. S. Meijers, T. J. Bracegirdle, Z. Wang, and T. Roy, 2013: Assessment of Southern Ocean water mass circulation and characteristics in CMIP5 models: Historical bias and forcing response. J. Geophys. Res. Oceans, 118, 18301844, https://doi.org/10.1002/jgrc.20135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santos, F., M. Gomez-Gesteira, M. DeCastro, and I. Alvarez, 2012: Differences in coastal and oceanic SST trends due to the strengthening of coastal upwelling along the Benguela Current system. Cont. Shelf Res., 34, 7986, https://doi.org/10.1016/j.csr.2011.12.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidtko, S., G. C. Johnson, and J. M. Lyman, 2013: MIMOC: A global monthly isopycnal upper-ocean climatology with mixed layers. J. Geophys. Res. Oceans, 118, 16581672, https://doi.org/10.1002/jgrc.20122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidov, D., 2009: Heat transport, oceanic and atmospheric. Encyclopedia of Paleoclimatology and Ancient Environments, V. Gornitz, Ed., Springer, 407–409, https://doi.org/10.1007/978-1-4020-4411-3_102.

    • Crossref
    • Export Citation
  • Sen Gupta, A., L. C. Muir, J. N. Brown, S. J. Phipps, P. J. Durack, D. Monselesan, and S. E. Wijffels, 2013: Climate drift in the CMIP3 models. J. Climate, 25, 46214640, https://doi.org/10.1175/JCLI-D-11-00312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao, A. E., S. T. Gille, S. Mecking, and L. Thompson, 2015: Properties of the subantarctic front and polar front from the skewness of sea level anomaly. J. Geophys. Res. Oceans, 120, 51795193, https://doi.org/10.1002/2015JC010723.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snow, K., A. M. C. Hogg, S. M. Downes, B. M. Sloyan, M. L. Bates, and S. M. Griffies, 2015: Sensitivity of abyssal water masses to overflow parameterisations. Ocean Modell., 89, 84103, https://doi.org/10.1016/j.ocemod.2015.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, K. D., W. Kim, S. Urakawa, A. M. Hogg, S. Yeager, H. Tsujino, H. Nakano, and A. E. Kiss, 2020: JRA55-do-based repeat year forcing datasets for driving ocean–sea-ice models. Ocean Modell., 147, 101557, https://doi.org/10.1016/j.ocemod.2019.101557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., 2013: The ocean as a component of the climate system. Ocean Circulation and Climate: A 21st Century Perspective, G. Siedler et al., Eds., 2nd ed. Academic Press, 3–30, https://doi.org/10.1016/B978-0-12-391851-2.00001-5.

    • Crossref
    • Export Citation
  • Strub, P. T., V. Combes, F. A. Shillington, and O. Pizarro, 2013: Currents and processes along the eastern boundaries. Ocean Circulation and Climate: A 21st Century Perspective, G. Siedler et al., Eds., Academic Press, 339–384.

    • Crossref
    • Export Citation
  • Sydeman, W. J., M. García-Reyes, D. S. Schoeman, R. R. Rykaczewski, S. A. Thompson, B. A. Black, and S. J. Bograd, 2014: Climate change and wind intensification in coastal upwelling ecosystems. Science, 345, 7780, https://doi.org/10.1126/science.1251635.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tamsitt, V., L. D. Talley, M. R. Mazloff, and I. Cerovečki, 2016: Zonal variations in the Southern Ocean heat budget. J. Climate, 29, 65636579, https://doi.org/10.1175/JCLI-D-15-0630.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Todd, A., and Coauthors, 2020: Ocean-only FAFMIP: Understanding regional patterns of ocean heat content and dynamic sea level change. J. Adv. Model. Earth Syst., https://doi.org/10.1002/essoar.10501557.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14, 34333443, https://doi.org/10.1175/1520-0442(2001)014<3433:EOMAAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsujino, H., and Coauthors, 2018: JRA-55 based surface dataset for driving ocean–sea-ice models (JRA55-do). Ocean Modell., 130, 79139, https://doi.org/10.1016/j.ocemod.2018.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and A. T. Wittenberg, 2010: El Niño and our future climate: Where do we stand? Wiley Interdiscip. Rev.: Climate Change, 1, 260270, https://doi.org/10.1002/wcc.33.

    • Search Google Scholar
    • Export Citation
  • Wang, D., T. C. Gouhier, B. A. Menge, and A. R. Ganguly, 2015: Intensification and spatial homogenization of coastal upwelling under climate change. Nature, 518, 390394, https://doi.org/10.1038/nature14235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., S. P. Xie, R. X. Huang, and C. Chen, 2015: Robust warming pattern of global subtropical oceans and its mechanism. J. Climate, 28, 85748584, https://doi.org/10.1175/JCLI-D-14-00809.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wenegrat, J. O., L. N. Thomas, J. Gula, and J. C. McWilliams, 2018: Effects of the submesoscale on the potential vorticity budget of ocean mode waters. J. Phys. Oceanogr., 48, 21412165, https://doi.org/10.1175/JPO-D-17-0219.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijffels, S. E., D. Roemmich, D. Monselesan, J. A. Church, and J. Gilson, 2016: Ocean temperatures chronicle the ongoing warming of Earth. Nat. Climate Change, 6, 116118, https://doi.org/10.1038/nclimate2924.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winton, M., S. M. Griffies, B. L. Samuels, J. L. Sarmiento, and T. L. Licher, 2013: Connecting changing ocean circulation with changing climate. J. Climate, 26, 22682278, https://doi.org/10.1175/JCLI-D-12-00296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolfe, C. L., P. Cessi, J. L. McClean, and M. E. Maltrud, 2008: Vertical heat transport in eddying ocean models. Geophys. Res. Lett., 35, L23605, https://doi.org/10.1029/2008GL036138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., and Coauthors, 2012: Enhanced warming over the global subtropical western boundary currents. Nat. Climate Change, 2, 161166, https://doi.org/10.1038/nclimate1353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., and G. K. Vallis, 2012: The passive and active nature of ocean heat uptake in idealized climate change experiments. Climate Dyn., 38, 667684, https://doi.org/10.1007/s00382-011-1063-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., C. Deser, G. A. Vecchi, J. Ma, H. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986, https://doi.org/10.1175/2009JCLI3329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamaguchi, R., and T. Suga, 2019: Trend and variability in global upper-ocean stratification since the 1960s. J. Geophys. Res. Oceans, 124, 89338948, https://doi.org/10.1029/2019JC015439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, H., G. Lohmann, W. Wei, M. Dima, M. Ionita, and J. Liu, 2016: Intensification and poleward shift of subtropical western boundary currents in a warming climate. J. Geophys. Res. Oceans, 121, 49284945, https://doi.org/10.1002/2015JC011513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, H., and Coauthors, 2020: Poleward shift of the major ocean gyres detected in a warming climate. Geophys. Res. Lett., 47, e2019GL085868, https://doi.org/10.1029/2019GL085868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zanna, L., S. Khatiwala, J. M. Gregory, J. Ison, and P. Heimbach, 2019: Global reconstruction of historical ocean heat storage and transport. Proc. Natl. Acad. Sci. USA, 116, 11261131, https://doi.org/10.1073/pnas.1808838115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zika, J. D., N. Skliris, A. Blaker, R. Marsh, A. J. G. Nurser, and S. Josey, 2018: Improved estimates of water cycle change from ocean salinity: The key role of ocean warming. Environ. Res. Lett., 13, 074036, https://doi.org/10.1088/1748-9326/aace42.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 138 138 69
Full Text Views 45 45 24
PDF Downloads 77 77 40

Ocean Heat Storage in Response to Changing Ocean Circulation Processes

View More View Less
  • 1 Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
  • 2 CSIRO Oceans and Atmosphere, Aspendale, Victoria, Australia
  • 3 ARC Centre of Excellence for Climate Extremes, University of Tasmania, Hobart, Tasmania, Australia
  • 4 Institute for Atmospheric and Earth Science Research, University of Helsinki, Helsinki, Finland
  • 5 CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
  • 6 National Oceanographic Centre, Southampton, United Kingdom
  • 7 Centre for Southern Hemisphere Oceans Research, Hobart, Tasmania, Australia
  • 8 Australian Antarctic Program Partnership, Hobart, Tasmania, Australia
  • 9 NORCE, Norwegian Research Centre, Bjerknes Centre for Climate Research, Bergen, Norway
  • 10 Instituto de Oceanografia, Universidade Federal do Rio Grande-FURG, Rio Grande, Brazil
© Get Permissions
Restricted access

Abstract

Ocean heat storage due to local addition of heat (“added”) and due to changes in heat transport (“redistributed”) were quantified in ocean-only 2xCO2 simulations. While added heat storage dominates globally, redistribution makes important regional contributions, especially in the tropics. Heat redistribution is dominated by circulation changes, summarized by the super-residual transport, with only minor effects from changes in vertical mixing. While previous studies emphasized the contribution of redistribution feedback at high latitudes, this study shows that redistribution of heat also accounts for 65% of heat storage at low latitudes and 25% in the midlatitude (35°–50°S) Southern Ocean. Tropical warming results from the interplay between increased stratification and equatorward heat transport by the subtropical gyres, which redistributes heat from the subtropics to lower latitudes. The Atlantic pattern is remarkably distinct from other basins, resulting in larger basin-average heat storage. Added heat storage is evenly distributed throughout midlatitude Southern Ocean and dominates the total storage. However, redistribution stores heat north of the Antarctic Circumpolar Current in the Atlantic and Indian sectors, having an important contribution to the peak of heat storage at 45°S. Southern Ocean redistribution results from intensified heat convergence in the subtropical front and reduced stratification in response to surface heat, freshwater, and momentum flux perturbations. These results highlight that the distribution of ocean heat storage reflects both passive uptake of heat and active redistribution of heat by changes in ocean circulation processes. The redistributed heat transport must therefore be better understood for accurate projection of changes in ocean heat uptake efficiency, ocean heat storage, and thermosteric sea level.

Denotes content that is immediately available upon publication as open access.

Publisher’s Note: This article was revised on 2 October 2020 to fix errors in the affiliations for coauthors Marsland, Domingues, and Savita that were present when originally published.

Corresponding author: Fabio Boeira Dias, fabio.boeiradias@helsinki.fi

Abstract

Ocean heat storage due to local addition of heat (“added”) and due to changes in heat transport (“redistributed”) were quantified in ocean-only 2xCO2 simulations. While added heat storage dominates globally, redistribution makes important regional contributions, especially in the tropics. Heat redistribution is dominated by circulation changes, summarized by the super-residual transport, with only minor effects from changes in vertical mixing. While previous studies emphasized the contribution of redistribution feedback at high latitudes, this study shows that redistribution of heat also accounts for 65% of heat storage at low latitudes and 25% in the midlatitude (35°–50°S) Southern Ocean. Tropical warming results from the interplay between increased stratification and equatorward heat transport by the subtropical gyres, which redistributes heat from the subtropics to lower latitudes. The Atlantic pattern is remarkably distinct from other basins, resulting in larger basin-average heat storage. Added heat storage is evenly distributed throughout midlatitude Southern Ocean and dominates the total storage. However, redistribution stores heat north of the Antarctic Circumpolar Current in the Atlantic and Indian sectors, having an important contribution to the peak of heat storage at 45°S. Southern Ocean redistribution results from intensified heat convergence in the subtropical front and reduced stratification in response to surface heat, freshwater, and momentum flux perturbations. These results highlight that the distribution of ocean heat storage reflects both passive uptake of heat and active redistribution of heat by changes in ocean circulation processes. The redistributed heat transport must therefore be better understood for accurate projection of changes in ocean heat uptake efficiency, ocean heat storage, and thermosteric sea level.

Denotes content that is immediately available upon publication as open access.

Publisher’s Note: This article was revised on 2 October 2020 to fix errors in the affiliations for coauthors Marsland, Domingues, and Savita that were present when originally published.

Corresponding author: Fabio Boeira Dias, fabio.boeiradias@helsinki.fi
Save