• AIRS Science Team, and J. Teixeira, 2013: AIRS/Aqua L3 Daily Standard Physical Retrieval (AIRS+AMSU) 1 degree × 1 degree V006. Goddard Earth Sciences Data and Information Services Center, accessed 11 October 2018, https://doi.org/10.5067/Aqua/AIRS/DATA301.

    • Crossref
    • Export Citation
  • Barkley, A. E., and Coauthors, 2019: African biomass burning is a substantial source of phosphorus deposition to the Amazon, tropical Atlantic Ocean, and Southern Ocean. Proc. Natl. Acad. Sci. USA, 116, 16 21616 221, https://doi.org/10.1073/pnas.1906091116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barton, N. P., S. A. Klein, J. S. Boyle, and Y. Y. Zhang, 2012: Arctic synoptic regimes: Comparing domain-wide Arctic cloud observations with CAM4 and CAM5 during similar dynamics. J. Geophys. Res., 117, D15205, https://doi.org/10.1029/2012JD017589.

    • Search Google Scholar
    • Export Citation
  • Bègue, N., P. Tulet, J. Pelon, B. Aouizerats, A. Berger, and A. Schwarzenboeck, 2015: Aerosol processing and CCN formation of an intense Saharan dust plume during the EUCAARI 2008 campaign. Atmos. Chem. Phys., 15, 34973516, https://doi.org/10.5194/acp-15-3497-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bian, H., and Coauthors, 2019: Observationally constrained analysis of sea salt aerosol in the marine atmosphere. Atmos. Chem. Phys., 19, 10 77310 785, https://doi.org/10.5194/acp-19-10773-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 571–657.

  • Buchard, V., and Coauthors, 2017: The MERRA-2 aerosol reanalysis, 1980 onward. Part II: Evaluation and case studies. J. Climate, 30, 68516872, https://doi.org/10.1175/JCLI-D-16-0613.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., and J. Prospero, 1972: The large-scale movement of Saharan air outbreaks over the northern equatorial Atlantic. J. Appl. Meteor., 11, 283297, https://doi.org/10.1175/1520-0450(1972)011<0283:TLSMOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chakraborty, S., R. Fu, S. T. Massie, and G. Stephens, 2016: Relative influence of meteorological conditions and aerosols on the lifetime of mesoscale convective systems. Proc. Natl. Acad. Sci. USA, 113, 74267431, https://doi.org/10.1073/pnas.1601935113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S.-P., C.-H. Lu, J. McQueen, and P. Lee, 2018: Application of satellite observations in conjunction with aerosol reanalysis to characterize long-range transport of African and Asian dust on air quality in the contiguous U.S. Atmos. Environ., 187, 174195, https://doi.org/10.1016/j.atmosenv.2018.05.038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y.-C., M. W. Christensen, G. L. Stephens, and J. H. Seinfeld, 2014: Satellite-based estimate of global aerosol-cloud radiative forcing by marine warm clouds. Nat. Geosci., 7, 643646, https://doi.org/10.1038/ngeo2214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chin, M., and Coauthors, 2002: Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and Sun photometer measurements. J. Atmos. Sci., 59, 461483, https://doi.org/10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, A. D., and Coauthors, 2013: Free troposphere as a major source of CCN for the equatorial Pacific boundary layer: Long-range transport and teleconnections. Atmos. Chem. Phys., 13, 75117529, https://doi.org/10.5194/acp-13-7511-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colarco, P., A. da Silva, M. Chin, and T. Diehl, 2010: Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth. J. Geophys. Res., 115, D14207, https://doi.org/10.1029/2009JD012820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corr, C. A., and Coauthors, 2016: Observational evidence for the convective transport of dust over the central United States. J. Geophys. Res. Atmos., 121, 13061319, https://doi.org/10.1002/2015JD023789.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cziczo, D. J., K. D. Froyd, S. J. Gallavardin, O. Moehler, S. Benz, H. Saathoff, and D. M. Murphy, 2009: Deactivation of ice nuclei due to atmospherically relevant surface coatings. Environ. Res. Lett., 4, 044013, https://doi.org/10.1088/1748-9326/4/4/044013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doherty, O. M., N. Riemer, and S. Hameed, 2012: Control of Saharan mineral dust transport to Barbados in winter by the intertropical convergence zone over West Africa. J. Geophys. Res., 117, D19117, https://doi.org/10.1029/2012JD017767.

    • Search Google Scholar
    • Export Citation
  • Dong, X., R. Li, Y. Wang, Y. Fu, and C. Zhao, 2018: Potential impacts of Sahara dust aerosol on rainfall vertical structure over the Atlantic Ocean as identified from EOF analysis. J. Geophys. Res. Atmos., 123, 88508868, https://doi.org/10.1029/2018JD028500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douglas, A., and T. L’Ecuyer, 2018: Understanding aerosol-cloud-radiation interactions using local meteorology and cloud state constraints. Atmos. Chem. Phys., 19, 62516268, https://doi.org/10.5194/acp-19-6251-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., and C. S. Velden, 2004: The impact of the Saharan air layer on Atlantic tropical cyclone activity. Bull. Amer. Meteor. Soc., 85, 353366, https://doi.org/10.1175/BAMS-85-3-353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ervens, B., 2015: Modeling the processing of aerosol and trace gases in clouds and fogs. Chem. Rev., 115, 41574198, https://doi.org/10.1021/cr5005887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., Y. Wang, D. Rosenfeld, and X. Liu, 2016: Review of aerosol–cloud interactions: Mechanisms, significance, and challenges. J. Atmos. Sci., 73, 42214252, https://doi.org/10.1175/JAS-D-16-0037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., and Coauthors, 2018: Substantial convection and precipitation enhancements by ultrafine aerosol particles. Science, 359, 411418, https://doi.org/10.1126/science.aan8461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GMAO, 2015a: Global Modeling and Assimilation Office (GMAO), MERRA-2 inst3_3d_aer_Nv: 3d, 3-Hourly, Instantaneous, Model-Level, Assimilation, Aerosol Mixing Ratio V5.12.4. Goddard Earth Sciences Data and Information Services Center, accessed 10 October 2018, https://doi.org/10.5067/LTVB4GPCOTK2.

    • Crossref
    • Export Citation
  • GMAO, 2015b: Global Modeling and Assimilation Office (GMAO), MERRA-2 inst3_3d_asm_Nv: 3d, 3-Hourly, Instantaneous, Model-Level, Assimilation, Assimilated Meteorological Fields V5.12.4. Goddard Earth Sciences Data and Information Services Center, accessed 30 October 2018, https://doi.org/10.5067/WWQSXQ8IVFW8.

  • Grabowski, W. W., and H. Morrison, 2016: Untangling microphysical impacts on deep convection applying a novel modeling methodology. Part II: Double-moment microphysics. J. Atmos. Sci., 73, 37493770, https://doi.org/10.1175/JAS-D-15-0367.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hastie, T. J., and R. J. Tibshirani, 1990: Generalized Additive Models. Chapman and Hall, 352 pp.

  • Heikenfeld, M., B. White, L. Labbouz, and P. Stier, 2019: Aerosol effects on deep convection: The propagation of aerosol perturbations through convective cloud microphysics. Atmos. Chem. Phys., 19, 26012627, https://doi.org/10.5194/acp-19-2601-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howell, S. G., A. D. Clarke, Y. Shinozuka, V. Kapustin, C. S. McNaughton, B. J. Huebert, S. J. Doherty, and T. L. Anderson, 2006: Influence of relative humidity upon pollution and dust during ACE-Asia: Size distributions and implications for optical properties. J. Geophys. Res., 111, D06205, https://doi.org/10.1029/2004JD005759.

    • Search Google Scholar
    • Export Citation
  • Huang, J., C. Zhang, and J. M. Prospero, 2009: African aerosol and large-scale precipitation variability over West Africa. Environ. Res. Lett., 4, 015006, https://doi.org/10.1088/1748-9326/4/1/015006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ilotoviz, E., and A. Khain, 2016: Application of a new scheme of cloud base droplet nucleation in a spectral (bin) microphysics cloud model: Sensitivity to aerosol size distribution. Atmos. Chem. Phys., 16, 14 31714 329, https://doi.org/10.5194/acp-16-14317-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenkins, G. S., A. S. Pratt, and A. Heymsfield, 2008: Possible linkages between Saharan dust and tropical cyclone rain band invigoration in the eastern Atlantic during NAMMA-06. Geophys. Res. Lett., 35, L08815, https://doi.org/10.1029/2008GL034072.

    • Search Google Scholar
    • Export Citation
  • Jiang, J. H., H. Su, L. Huang, Y. Wang, S. Massie, B. Zhao, A. Omar, and Z. Wang, 2018: Contrasting effects on deep convective clouds by different types of aerosols. Nat. Commun., 9, 3874, https://doi.org/10.1038/s41467-018-06280-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jouan, C., and J. A. Milbrandt, 2019: The importance of the ice-phase microphysics parameterization for simulating the effects of changes to CCN concentrations in deep convection. J. Atmos. Sci., 76, 17271752, https://doi.org/10.1175/JAS-D-18-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahn, B. H., and Coauthors, 2014: The Atmospheric Infrared Sounder version 6 cloud products. Atmos. Chem. Phys., 14, 399426, https://doi.org/10.5194/acp-14-399-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanji, Z. A., L. A. Ladino, H. Wex, Y. Boose, M. Burkert-Kohn, D. J. Cziczo, and M. Krämer, 2017: Overview of ice nucleating particles. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0006.1.

    • Crossref
    • Export Citation
  • Karydis, V. A., P. Kumar, D. Barahona, I. N. Sokolik, and A. Nenes, 2011: On the effect of dust particles on global cloud condensation nuclei and cloud droplet number. J. Geophys. Res., 116, D23204, https://doi.org/10.1029/2011JD016283.

    • Search Google Scholar
    • Export Citation
  • Kennedy, A. D., X. Dong, B. Xi, S. Xie, Y. Zhang, and J. Chen, 2011: A comparison of MERRA and NARR reanalyses with the DOE ARM SGP data. J. Climate, 24, 45414557, https://doi.org/10.1175/2011JCLI3978.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kishcha, P., A. da Silva, B. Starobinets, C. Long, O. Kalashnikova, and P. Alpert, 2015: Saharan dust as a causal factor of hemispheric asymmetry in aerosols and cloud cover over the tropical Atlantic Ocean. Int. J. Remote Sens., 36, 34233445, https://doi.org/10.1080/01431161.2015.1060646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kok, J. F., and Coauthors, 2017: Smaller desert dust cooling effect estimated from analysis of dust size and abundance. Nat. Geosci., 10, 274278, https://doi.org/10.1038/ngeo2912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koren, I., Y. J. Kaufman, D. Rosenfeld, L. A. Remer, and Y. Rudich, 2005: Aerosol invigoration and restructuring of Atlantic convective clouds. Geophys. Res. Lett., 32, L14828, https://doi.org/10.1029/2005GL023187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., and Coauthors, 2019: A new look at the environmental conditions favorable to secondary ice production. Atmos. Chem. Phys., 20, 13911429, https://doi.org/10.5194/acp-20-1391-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ladino, L. A., A. Korolev, I. Heckman, M. Wolde, A. M. Fridlind, and A. S. Ackerman, 2017: On the role of ice-nucleating aerosol in the formation of ice particles in tropical mesoscale convective systems. Geophys. Res. Lett., 44, 15741582, https://doi.org/10.1002/2016GL072455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, Y. H., K. Chen, and P. J. Adams, 2009: Development of a global model of mineral dust aerosol microphysics. Atmos. Chem. Phys., 9, 24412458, https://doi.org/10.5194/acp-9-2441-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levin, Z., E. Ganor, and V. Gladstein, 1996: The effects of desert particles coated with sulfate on rain formation in the eastern Mediterranean. J. Appl. Meteor., 35, 15111523, https://doi.org/10.1175/1520-0450(1996)035<1511:TEODPC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, R., and Q.-L. Min, 2010: Impacts of mineral dust on the vertical structure of precipitation. J. Geophys. Res., 115, D09203, https://doi.org/10.1029/2009JD011925.

    • Search Google Scholar
    • Export Citation
  • Li, R., X. Dong, J. Guo, Y. Fu, C. Zhao, Y. Wang, and Q. Min, 2017: The implications of dust ice nuclei effect on cloud top temperature in a complex mesoscale convective system. Sci. Rep., 7, 13826, https://doi.org/10.1038/s41598-017-12681-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lonitz, K., B. Stevens, L. Nuijens, V. Sant, L. Hirsch, and A. Seifert, 2015: The signature of aerosols and meteorology in long-term cloud radar observations of trade wind cumuli. J. Atmos. Sci., 72, 46434659, https://doi.org/10.1175/JAS-D-14-0348.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manktelow, P. T., K. S. Carslaw, G. W. Mann, and D. V. Spracklen, 2010: The impact of dust on sulfate aerosol, CN and CCN during an East Asian dust storm. Atmos. Chem. Phys., 10, 365382, https://doi.org/10.5194/acp-10-365-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medeiros, B., and L. Nuijens, 2016: Clouds at Barbados are representative of clouds across the trade wind regions in observations and climate models. Proc. Natl. Acad. Sci. USA, 113, E3062E3070, https://doi.org/10.1073/pnas.1521494113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, Q.-L., R. Li, B. Lin, E. Joseph, V. Morris, Y. Hu, S. W. Li, and S. Wang, 2014: Impacts of mineral dust on ice clouds in tropical deep convection systems. Atmos. Res., 143, 6472, https://doi.org/10.1016/j.atmosres.2014.01.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nenes, A., B. Murray, and A. Bougiatioti, 2014: Mineral dust and its microphysical interactions with clouds. Mineral Dust: A Key Player in the Earth System, P. Knippertz and J.-B. W. Stuut, Eds., Springer, 287–325.

    • Crossref
    • Export Citation
  • Niu, F., and Z. Li, 2012: Systematic variations of cloud top temperature and precipitation rate with aerosols over the global tropics. Atmos. Chem. Phys., 12, 84918498, https://doi.org/10.5194/acp-12-8491-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nuijens, L., B. Medeiros, I. Sandu, and M. Ahlgrimm, 2015: The behavior of trade-wind cloudiness in observations and models: The major cloud components and their variability. J. Adv. Model. Earth Syst., 7, 600616, https://doi.org/10.1002/2014MS000390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., N. Cho, D. Lee, and S. Kato, 2016: Radiative effects of global MODIS cloud regimes. J. Geophys. Res. Atmos., 121, 22992317, https://doi.org/10.1002/2015JD024502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., R. T. Nees, and M. Uematsu, 1987: Deposition rate of particulate and dissolved aluminum derived from Saharan dust in precipitation at Miami, Florida. J. Geophys. Res., 92, 14 72314 731, https://doi.org/10.1029/JD092iD12p14723.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quinn, P. K., D. J. Coffman, J. E. Johnson, L. M. Upchurch, and T. S. Bates, 2017: Small fraction of marine cloud condensation nuclei made up of sea spray aerosol. Nat. Geosci., 10, 674679, https://doi.org/10.1038/ngeo3003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randles, C. A., and Coauthors, 2016: Aerosols in MERRA-2. Tech. Rep. Series on Global Modeling and Data Assimilation 45, NASA Global Modeling and Assimilation Office, 140 pp.

  • Randles, C. A., and Coauthors, 2017: The MERRA-2 aerosol reanalysis, 1980 onward. Part I: System description and data assimilation evaluation. J. Climate, 30, 68236850, https://doi.org/10.1175/JCLI-D-16-0609.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., Y. Rudich, and R. Lahav, 2001: Desert dust suppressing precipitation: A possible desertification feedback loop. Proc. Natl. Acad. Sci. USA, 98, 59755980, https://doi.org/10.1073/pnas.101122798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., W. L. Woodley, A. Khain, W. R. Cotton, G. Carrió, I. Ginis, and J. H. Golden, 2012: Aerosol effects on microstructure and intensity of tropical cyclones. Bull. Amer. Meteor. Soc., 93, 9871001, https://doi.org/10.1175/BAMS-D-11-00147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sáenz, J., S. J. González-Rojí, S. Carreno-Madinabeitia, and G. Ibarra-Berastegi, 2018: aiRthermo: Atmospheric Thermodynamics and Visualization, version 1.2.1. R package, https://cran.r-project.org/web/packages/aiRthermo/index.html.

  • Sanchez, K. J., and Coauthors, 2018: Substantial seasonal contribution of observed biogenic sulfate particles to cloud condensation nuclei. Sci. Rep., 8, 3235, https://doi.org/10.1038/s41598-018-21590-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sauter, K., T. S. L’Ecuyer, S. C. van den Heever, C. Twohy, A. Heidinger, S. Wanzong, and N. Wood, 2019: The observed influence of tropical convection on the Saharan dust layer. J. Geophys. Res. Atmos., 124, 10 89610 912, https://doi.org/10.1029/2019JD031365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwarz, J. P., and Coauthors, 2013: Global-scale seasonally resolved black carbon vertical profiles over the Pacific. Geophys. Res. Lett., 40, 55425547, https://doi.org/10.1002/2013GL057775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seigel, R. B., and S. C. van den Heever, 2012: Dust lofting and ingestion by supercell storms. J. Atmos. Sci., 69, 14531473, https://doi.org/10.1175/JAS-D-11-0222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., V. Ramanathan, T. P. Barnett, M. K. Tyree, and E. Roeckner, 1994: Response of an atmospheric general circulation model to radiative forcing of tropical clouds. J. Geophys. Res., 99, 20 82920 845, https://doi.org/10.1029/94JD01632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stein, M., 1987: Large sample properties of simulations using Latin hypercube sampling. Technometrics, 29, 143151, https://doi.org/10.1080/00401706.1987.10488205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2016: The Barbados cloud observatory: Anchoring investigations of clouds and circulation on the edge of the ITCZ. Bull. Amer. Meteor. Soc., 97, 787801, https://doi.org/10.1175/BAMS-D-14-00247.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storer, R. L., S. C. van den Heever, and G. L. Stephens, 2010: Modeling aerosol impacts on convective storms in different environments. J. Atmos. Sci., 67, 39043915, https://doi.org/10.1175/2010JAS3363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storer, R. L., S. C. van den Heever, and T. S. L’Ecuyer, 2014: Observations of aerosol-induced convective invigoration in the tropical east Atlantic. J. Geophys. Res. Atmos., 119, 39633975, https://doi.org/10.1002/2013JD020272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Susskind, J., J. M. Blaisdell, and L. Iredell, 2014: Improved methodology for surface and atmospheric soundings, error estimates, and quality control procedures: The Atmospheric Infrared Sounder Science Team version-6 retrieval algorithm. J. Appl. Remote Sens., 8, 084994, https://doi.org/10.1117/1.JRS.8.084994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and X. Li, 2016: The relationship between latent heating, vertical velocity, and precipitation processes: The impact of aerosols on precipitation in organized deep convective systems. J. Geophys. Res. Atmos., 121, 62996320, https://doi.org/10.1002/2015JD024267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, P. C., S. Kato, K.-M. Xu, and M. Cai, 2015: Covariance between Arctic sea ice and clouds within atmospheric state regimes at the satellite footprint level. J. Geophys. Res. Atmos., 120, 12 65612 678, https://doi.org/10.1002/2015JD023520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsamalis, C., A. Chédin, J. Pelon, and V. Capelle, 2013: The seasonal vertical distribution of the Saharan air layer and its modulation by the wind. Atmos. Chem. Phys., 13, 11 23511 257, https://doi.org/10.5194/acp-13-11235-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tulet, P., K. Crahan-Kaku, M. Leriche, B. Aouizerats, and S. Crumeyrolle, 2010: Mixing of dust aerosols into a mesoscale convective system: Generation, filtering and possible feedbacks on ice anvils. Atmos. Res., 96, 302314, https://doi.org/10.1016/j.atmosres.2009.09.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., 2015: Measurements of Saharan dust in convective clouds over the tropical eastern Atlantic Ocean. J. Atmos. Sci., 72, 7581, https://doi.org/10.1175/JAS-D-14-0133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., and Coauthors, 2009: Saharan dust particles nucleate droplets in eastern Atlantic clouds. Geophys. Res. Lett., 36, L01807, https://doi.org/10.1029/2008GL035846.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., and Coauthors, 2017: Saharan dust, convective lofting, aerosol enhancement zones, and potential impacts on ice nucleation in the tropical upper troposphere. J. Geophys. Res. Atmos., 122, 88338851, https://doi.org/10.1002/2017JD026933.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Heever, S. C., G. G. Carrió, W. R. Cotton, P. J. DeMott, and A. J. Prenni, 2006: Impacts of nucleating aerosol on Florida storms. Part I: Mesoscale simulations. J. Atmos. Sci., 63, 17521775, https://doi.org/10.1175/JAS3713.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Varble, A., 2018: Erroneous attribution of deep convective invigoration to aerosol concentration. J. Atmos. Sci., 75, 13511368, https://doi.org/10.1175/JAS-D-17-0217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williamson, C. J., and Coauthors, 2019: A large source of cloud condensation nuclei from new particle formation in the tropics. Nature, 574, 399403, https://doi.org/10.1038/s41586-019-1638-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winker, D. M., 2018: CALIPSO Lidar Level 2 5 km Aerosol Layer Data V4-20. NASA Langley Research Center Atmospheric Science Data Center DAAC, accessed 15 November 2019, https://doi.org/10.5067/CALIOP/CALIPSO/LID_L2_05kmALay-Standard-V4-20.

    • Crossref
    • Export Citation
  • Wood, S. N., 2011: Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. Roy. Stat. Soc., 73B, 336, https://doi.org/10.1111/j.1467-9868.2010.00749.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, S. N., N. Pya, and B. Säfken, 2016: Smoothing parameter and model selection for general smooth models. J. Amer. Stat. Assoc., 111, 15481563, https://doi.org/10.1080/01621459.2016.1180986.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Worden, J., D. Noone, and K. Bowman, 2007: Importance of rain evaporation and continental convection in the tropical water cycle. Nature, 445, 528532, https://doi.org/10.1038/nature05508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, P., and Coauthors, 2019: Efficient in-cloud removal of aerosols by deep convection. Geophys. Res. Lett., 46, 10611069, https://doi.org/10.1029/2018GL080544.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zamora, L. M., R. A. Khan, K. B. Huebert, A. Stohl, and S. Eckhardt, 2018: A satellite-based estimate of combustion aerosol cloud microphysical effects over the Arctic Ocean. Atmos. Chem. Phys., 18, 14 94914 964, https://doi.org/10.5194/acp-18-14949-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, H., G. M. McFarquhar, S. M. Saleeby, and W. R. Cotton, 2007: Impacts of Saharan dust as CCN on the evolution of an idealized tropical cyclone. Geophys. Res. Lett., 34, L14812, https://doi.org/10.1029/2007GL029876.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, H., G. M. McFarquhar, W. R. Cotton, and Y. Deng, 2009: Direct and indirect impacts of Saharan dust acting as cloud condensation nuclei on tropical cyclone eyewall development. Geophys. Res. Lett., 36, L06802, https://doi.org/10.1029/2009GL037276.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 160 160 75
Full Text Views 46 46 27
PDF Downloads 58 58 31

Saharan Dust Aerosols Change Deep Convective Cloud Prevalence, Possibly by Inhibiting Marine New Particle Formation

View More View Less
  • 1 Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland
  • 2 NASA Goddard Space Flight Center, Greenbelt, Maryland
© Get Permissions
Restricted access

Abstract

Deep convective clouds (DCCs) are important to global climate, atmospheric chemistry, and precipitation. Dust, a dominant aerosol type over the tropical North Atlantic, has potentially large microphysical impacts on DCCs over this region. However, dust effects are difficult to identify, being confounded by covarying meteorology and other factors. Here, a method is developed to quantify DCC responses to dust and other aerosols at large spatial and temporal scales despite these uncertainties. Over 7 million tropical North Atlantic cloud, aerosol, and meteorological profiles from CloudSat satellite data and MERRA-2 reanalysis products are used to stratify cloud observations into meteorological regimes, objectively select a priori assumptions, and iteratively test uncertainty sensitivity. Dust is robustly associated with a 54% increase in DCC prevalence. However, marine aerosol proxy concentrations are 5 times more predictive of dust-associated increases in DCC prevalence than the dust itself, or any other aerosol or meteorological factor. Marine aerosols are also the most predictive factor for the even larger increases in DCC prevalence (61%–87%) associated with enhanced dimethyl sulfide and combustion and sulfate aerosols. Dust-associated increases in DCC prevalence are smaller at high dust concentrations than at low concentrations. These observations suggest that not only is dust a comparatively ineffective CCN source, but it may also act as a condensation/coagulation sink for chemical precursors to CCN, reducing total CCN availability over large spatial scales by inhibiting new particle formation from marine emissions. These observations represent the first time this process, previously predicted by models, has been supported and quantified by measurements.

This article is included in the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) special collection.

Corresponding author: Lauren M. Zamora, lauren.m.zamora@nasa.gov

Abstract

Deep convective clouds (DCCs) are important to global climate, atmospheric chemistry, and precipitation. Dust, a dominant aerosol type over the tropical North Atlantic, has potentially large microphysical impacts on DCCs over this region. However, dust effects are difficult to identify, being confounded by covarying meteorology and other factors. Here, a method is developed to quantify DCC responses to dust and other aerosols at large spatial and temporal scales despite these uncertainties. Over 7 million tropical North Atlantic cloud, aerosol, and meteorological profiles from CloudSat satellite data and MERRA-2 reanalysis products are used to stratify cloud observations into meteorological regimes, objectively select a priori assumptions, and iteratively test uncertainty sensitivity. Dust is robustly associated with a 54% increase in DCC prevalence. However, marine aerosol proxy concentrations are 5 times more predictive of dust-associated increases in DCC prevalence than the dust itself, or any other aerosol or meteorological factor. Marine aerosols are also the most predictive factor for the even larger increases in DCC prevalence (61%–87%) associated with enhanced dimethyl sulfide and combustion and sulfate aerosols. Dust-associated increases in DCC prevalence are smaller at high dust concentrations than at low concentrations. These observations suggest that not only is dust a comparatively ineffective CCN source, but it may also act as a condensation/coagulation sink for chemical precursors to CCN, reducing total CCN availability over large spatial scales by inhibiting new particle formation from marine emissions. These observations represent the first time this process, previously predicted by models, has been supported and quantified by measurements.

This article is included in the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) special collection.

Corresponding author: Lauren M. Zamora, lauren.m.zamora@nasa.gov
Save