• Adler, R. F., G. J. Gu, M. Sapiano, J. J. Wang, and G. J. Huffman, 2017: Global precipitation: Means, variations and trends during the satellite era (1979-2014). Surv. Geophys., 38, 679699, https://doi.org/10.1007/s10712-017-9416-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albergel, C., P. de Rosnay, C. Gruhier, J. Muñoz-Sabater, S. Hasenauer, L. Isaksen, Y. Kerr, and W. Wagner, 2012: Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations. Remote Sens. Environ., 118, 215226, https://doi.org/10.1016/j.rse.2011.11.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balsamo, G., F. Pappenberger, E. Dutra, P. Viterbo, and B. van den Hurk, 2011: A revised land hydrology in the ECMWF model: A step towards daily water flux prediction in a fully-closed water cycle. Hydrol. Processes, 25, 10461054, https://doi.org/10.1002/hyp.7808.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balsamo, G., and Coauthors, 2015: ERA-Interim/land: A global land surface reanalysis data set. Hydrol. Earth Syst. Sci., 19, 389407, https://doi.org/10.5194/hess-19-389-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, K. R., B. J. Blanchard, T. J. Schmugge, and M. W. Witczak, 1980: Analysis of surface moisture variations within large-field sites. Water Resour. Res., 16, 796810, https://doi.org/10.1029/WR016i004p00796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Box, G. E. P., and D. R. Cox, 1964: An analysis of transformations. J. Roy. Stat. Soc., 26B, 211252, https://doi.org/10.1111/J.2517-6161.1964.TB00553.X.

    • Search Google Scholar
    • Export Citation
  • Chang, L.-L., and Coauthors, 2018: Why do large-scale land surface models produce a low ratio of transpiration to evapotranspiration? J. Geophys. Res. Atmos., 123, 91099130, https://doi.org/10.1029/2018JD029159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, N., C. Xiao, F. Pu, X. Wang, C. Wang, Z. Wang, and J. Gong, 2015: Cyber-physical geographical information service-enabled control of diverse in-situ sensors. Sensors, 15, 25652592, https://doi.org/10.3390/s150202565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cleveland, R. B., W. S. Cleveland, J. E. McRae, and I. Terpenning, 1990: STL: A seasonal-trend decomposition. J. Off. Stat., 6, 373.

  • Cleveland, W. S., 1979: Robust locally weighted regression and smoothing scatterplots. J. Amer. Stat. Assoc., 74, 829836, https://doi.org/10.1080/01621459.1979.10481038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coenders-Gerrits, A. M., R. J. van der Ent, T. A. Bogaard, L. Wang-Erlandsson, M. Hrachowitz, and H. H. Savenije, 2014: Uncertainties in transpiration estimates. Nature, 506, E1E2, https://doi.org/10.1038/nature12925.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cowan, I. R., 1965: Transport of water in the soil-plant-atmosphere system. J. Appl. Ecol., 2, 221239, https://doi.org/10.2307/2401706.

  • D’Agostino, R. B., 1971: An omnibus test of normality for moderate and large size samples. Biometrika, 58, 341348, https://doi.org/10.1093/biomet/58.2.341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, Y., W. Shangguan, Q. Duan, B. Liu, S. Fu, and G. Niu, 2013: Development of a China dataset of soil hydraulic parameters using pedotransfer functions for land surface modeling. J. Hydrometeor., 14, 869887, https://doi.org/10.1175/JHM-D-12-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dardel, C., L. Kergoat, P. Hiernaux, E. Mougin, M. Grippa, and C. J. Tucker, 2014: Re-greening Sahel: 30 years of remote sensing data and field observations (Mali, Niger). Remote Sens. Environ., 140, 350364, https://doi.org/10.1016/j.rse.2013.09.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T., and S. Manabe, 1988: The influence of potential evaporation on the variabilities of simulated soil wetness and climate. J. Climate, 1, 523547, https://doi.org/10.1175/1520-0442(1988)001<0523:TIOPEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T., and S. Manabe, 1989: The influence of soil wetness on near-surface atmospheric variability. J. Climate, 2, 14471462, https://doi.org/10.1175/1520-0442(1989)002<1447:TIOSWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Djebou, D. C. S., and V. P. Singh, 2015: Retrieving vegetation growth patterns from soil moisture, precipitation and temperature using maximum entropy. Ecol. Modell., 309–310, 1021, https://doi.org/10.1016/j.ecolmodel.2015.03.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorigo, W. A., and Coauthors, 2011: The international soil moisture network: A data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci., 15, 16751698, https://doi.org/10.5194/hess-15-1675-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, R. E., P. D’Odorico, and H. E. Epstein, 2007: A dynamic soil water threshold for vegetation water stress derived from stomatal conductance models. Water Resour. Res., 43, W03431, https://doi.org/10.1029/2005WR004831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, S., and Q. Fu, 2013: Expansion of global drylands under a warming climate. Atmos. Chem. Phys., 13, 10 08110 094, https://doi.org/10.5194/acp-13-10081-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, C., H. Chen, S. Sun, V. Ongoma, W. Hua, H. Ma, B. Xu, and Y. Li, 2018: A potential predictor of multi-season droughts in southwest China: Soil moisture and its memory. Nat. Hazards, 91, 553566, https://doi.org/10.1007/s11069-017-3140-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, J. K., S. I. Seneviratne, A. M. Berg, K. L. Findell, S. Hagemann, D. M. Lawrence, and P. Gentine, 2019: Large influence of soil moisture on long-term terrestrial carbon uptake. Nature, 565, 476479, https://doi.org/10.1038/s41586-018-0848-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, X. H., Q. Zhang, V. P. Singh, and P. J. Shi, 2017: Changes in magnitude and frequency of heavy precipitation across China and its potential links to summer temperature. J. Hydrol., 547, 718731, https://doi.org/10.1016/j.jhydrol.2017.02.041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haines, W. B., 1930: Studies in the physical properties of soil. V. The hysteresis effect in capillary properties, and the modes of moisture distribution associated therewith. J. Agric. Sci., 20, 97116, https://doi.org/10.1017/S002185960008864X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2018: Operational global reanalysis: Progress, future directions and synergies with NWP. ERA Rep. Series 27, 65 pp., https://doi.org/10.21957/tkic6g3wm.

    • Crossref
    • Export Citation
  • Hsiao, T. C., and E. Acevedo, 1974: Plant responses to water deficits, water-use efficiency, and drought resistance. Agric. Meteor., 14, 5984, https://doi.org/10.1016/0002-1571(74)90011-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., L. Gao, and X. Chen, 2015: Temporal-spatial characteristics of different rainfall levels in Fujian Province from 1960 to 2011 (in Chinese). Sci. Soil Water Conserv., 13, 1723.

    • Search Google Scholar
    • Export Citation
  • Huang, J. P., H. P. Yu, X. D. Guan, G. Y. Wang, and R. X. Guo, 2016: Accelerated dryland expansion under climate change. Nat. Climate Change, 6, 166171, https://doi.org/10.1038/nclimate2837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, R., and Coauthors, 2014: A nested ecohydrological wireless sensor network for capturing the surface heterogeneity in the midstream areas of the Heihe River basin, China. IEEE Geosci. Remote Sens. Lett., 11, 20152019, https://doi.org/10.1109/LGRS.2014.2319085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and M. J. Suarez, 2001: Soil moisture memory in climate models. J. Hydrometeor., 2, 558570, https://doi.org/10.1175/1525-7541(2001)002<0558:SMMICM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2010: Contribution of land surface initialization to subseasonal forecast skill: First results from a multi-model experiment. Geophys. Res. Lett., 37, L02402, https://doi.org/10.1029/2009GL041677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lei, Y. B., and K. Yang, 2017: The cause of rapid lake expansion in the Tibetan Plateau: Climate wetting or warming? WIREs Water, 4, e1236, https://doi.org/10.1002/wat2.1236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, H. B., A. Robock, S. X. Liu, X. G. Mo, and P. Viterbo, 2005: Evaluation of reanalysis soil moisture simulations using updated Chinese soil moisture observations. J. Hydrometeor., 6, 180193, https://doi.org/10.1175/JHM416.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J. S., and H. Kawano, 1996: The areal distribution of soil moisture under sprinkler irrigation. Agric. Water Manage., 32, 2936, https://doi.org/10.1016/S0378-3774(96)01261-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, M., and Z. Ma, 2015: Soil moisture drought detection and multi-temporal variability across China. Sci. China Earth Sci., 58, 17981813, https://doi.org/10.1007/s11430-015-5076-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, M., P. Wu, and Z. Ma, 2020: A comprehensive evaluation of soil moisture and soil temperature from third-generation atmospheric and land reanalysis data sets. Int. J. Climatol., https://doi.org/10.1002/JOC.6549, in press.

    • Search Google Scholar
    • Export Citation
  • Li, M., Z. Ma, H. P. Gu, Q. Yang, and Z. Y. Zheng, 2017: Production of a combined land surface data set and its use to assess land-atmosphere coupling in China. J. Geophys. Res. Atmos., 122, 948965, https://doi.org/10.1002/2016JD025511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, S. X., X. G. Mo, H. B. Li, G. B. Peng, and A. Robock, 2001: Spatial variation of soil moisture in China: Geostatistical characterization. J. Meteor. Soc. Japan, 79, 555574, https://doi.org/10.2151/jmsj.79.555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y. Q., and R. Avissar, 1999: A study of persistence in the land–atmosphere system using a general circulation model and observations. J. Climate, 12, 21392153, https://doi.org/10.1175/1520-0442(1999)012<2139:ASOPIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z. Y., 2010: Bimodality in a monostable climate-ecosystem: The role of climate variability and soil moisture memory. J. Climate, 23, 14471455, https://doi.org/10.1175/2009JCLI3183.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahanama, S. P. P., and R. D. Koster, 2005: AGCM biases in evaporation regime: Impacts on soil moisture memory and land–atmosphere feedback. J. Hydrometeor., 6, 656669, https://doi.org/10.1175/JHM446.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MahfuzurRahman, M., and M. Lu, 2015: Characterizing soil moisture memory by soil moisture autocorrelation. J. Water Res. Hydraul. Eng., 3, 8594.

    • Search Google Scholar
    • Export Citation
  • Maidment, D. R., 1993: Handbook of Hydrology. 1st ed. McGraw-Hill Education, 1424 pp.

  • Matsumura, S., and K. Yamazaki, 2012: A longer climate memory carried by soil freeze-thaw processes in Siberia. Environ. Res. Lett., 7, 045402, https://doi.org/10.1088/1748-9326/7/4/045402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McColl, K. A., Q. He, H. Lu, and D. Entekhabi, 2019: Short-term and long-term surface soil moisture memory time scales are spatially anticorrelated at global scales. J. Hydrometeor., 20, 11651182, https://doi.org/10.1175/JHM-D-18-0141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Middleton, N. J., and D. S. Thomas, 1992: World Atlas of Desertification. 2nd ed. Arnold Publ. London, 182 pp.

  • Milly, P. C., K. A. Dunne, and A. V. Vecchia, 2005: Global pattern of trends in streamflow and water availability in a changing climate. Nature, 438, 347350, https://doi.org/10.1038/nature04312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orth, R., and S. I. Seneviratne, 2012: Analysis of soil moisture memory from observations in Europe. J. Geophys. Res., 117, D15115, https://doi.org/10.1029/2011JD017366.

    • Search Google Scholar
    • Export Citation
  • Orth, R., and S. I. Seneviratne, 2013: Propagation of soil moisture memory to streamflow and evapotranspiration in Europe. Hydrol. Earth Syst. Sci., 17, 38953911, https://doi.org/10.5194/hess-17-3895-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piao, S. L., L. Yin, X. H. Wang, P. Ciais, S. S. Peng, Z. H. Shen, and S. I. Seneviratne, 2009: Summer soil moisture regulated by precipitation frequency in China. Environ. Res. Lett., 4, 044012, https://doi.org/10.1088/1748-9326/4/4/044012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryu, D., and J. S. Famiglietti, 2005: Characterization of footprint-scale surface soil moisture variability using Gaussian and beta distribution functions during the southern Great Plains 1997 (SGP97) hydrology experiment. Water Resour. Res., 41, W12433, https://doi.org/10.1029/2004WR003835.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., and Coauthors, 2018: Land–atmosphere interactions: The LoCo perspective. Bull. Amer. Meteor. Soc., 99, 12531272, https://doi.org/10.1175/BAMS-D-17-0001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schewe, J., and Coauthors, 2019: State-of-the-art global models underestimate impacts from climate extremes. Nat. Commun., 10, 1005, https://doi.org/10.1038/s41467-019-08745-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwalm, C. R., and Coauthors, 2017: Global patterns of drought recovery. Nature, 548, 202205, https://doi.org/10.1038/nature23021.

  • Seneviratne, S. I., and Coauthors, 2006: Soil moisture memory in AGCM simulations: Analysis of Global Land–Atmosphere Coupling Experiment data. J. Hydrometeor., 7, 10901112, https://doi.org/10.1175/JHM533.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, A. J. Teuling, 2010: Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125161, https://doi.org/10.1016/j.earscirev.2010.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shinoda, M., 2001: Climate memory of snow mass as soil moisture over central Eurasia. J. Geophys. Res., 106, 33 39333 403, https://doi.org/10.1029/2001JD000525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, Z., J. Wen, L. Dente, R. van der Velde, L. Wang, Y. Ma, K. Yang, Z. Hu, 2011: The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products. Hydrol. Earth Syst. Sci., 15, 23032316, https://doi.org/10.5194/hess-15-2303-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vetter, M., and Coauthors, 2008: Analyzing the causes and spatial pattern of the European 2003 carbon flux anomaly using seven models. Biogeosciences, 5, 561583, https://doi.org/10.5194/bg-5-561-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viterbo, P., and A. C. M. Beljaars, 1995: An improved land-surface parameterization scheme in the ECMWF model and its validation. J. Climate, 8, 27162748, https://doi.org/10.1175/1520-0442(1995)008<2716:AILSPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viterbo, P., A. C. M. Beljaars, J. F. Mahfouf, and J. Teixeira, 1999: The representation of soil moisture freezing and its impact on the stable boundary layer. Quart. J. Roy. Meteor. Soc., 125, 24012426, https://doi.org/10.1002/qj.49712555904.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, A. H., and X. L. Shi, 2019: A multilayer soil moisture dataset based on the gravimetric method in China and its characteristics. J. Hydrometeor., 20, 17211736, https://doi.org/10.1175/JHM-D-19-0035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, W. R., M. A. Geller, and R. E. Dickinson, 2002: A case study for land model evaluation: Simulation of soil moisture amplitude damping and phase shift. J. Geophys. Res., 107, 4793, https://doi.org/10.1029/2001JD001405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, Z. Q., Y. P. Zhang, Z. H. Zhou, and N. Han, 2017: The spatio-temporal variability of droughts using the standardized precipitation index in Yunnan, China. Nat. Hazards, 88, 10231042, https://doi.org/10.1007/s11069-017-2904-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., H. Tian, S. Pan, G. Chen, B. Zhang, and S. Dangal, 2018: Amazon drought and forest response: Largely reduced forest photosynthesis but slightly increased canopy greenness during the extreme drought of 2015/2016. Global Change Biol., 24, 19191934, https://doi.org/10.1111/gcb.14056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, K., and C. H. Wang, 2019: Seasonal persistence of soil moisture anomalies related to freeze-thaw over the Tibetan Plateau and prediction signal of summer precipitation in eastern China. Climate Dyn., 53, 24112424, https://doi.org/10.1007/s00382-019-04867-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, K., and Coauthors, 2013: A multiscale soil moisture and freeze–thaw monitoring network on the third pole. Bull. Amer. Meteor. Soc., 94, 19071916, https://doi.org/10.1175/BAMS-D-12-00203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, K., H. Wu, J. Qin, C. Lin, W. Tang, and Y. Chen, 2014: Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Global Planet. Change, 112, 7991, https://doi.org/10.1016/j.gloplacha.2013.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, T. C., R. T. Wetherald, and S. Manabe, 1984: The effect of soil moisture on the short-term climate and hydrology change—A numerical experiment. Mon. Wea. Rev., 112, 474490, https://doi.org/10.1175/1520-0493(1984)112<0474:TEOSMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G. Q., W. Luo, W. F. Chen, and G. X. Zheng, 2019: A robust but variable lake expansion on the Tibetan Plateau. Sci. Bull., 64, 13061309, https://doi.org/10.1016/j.scib.2019.07.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., X. Xiao, X. Wu, S. Zhou, G. Zhang, Y. Qin, and J. Dong, 2017: A global moderate resolution dataset of gross primary production of vegetation for 2000-2016. Sci. Data, 4, 170165, https://doi.org/10.1038/sdata.2017.165.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 215 215 170
Full Text Views 15 15 7
PDF Downloads 33 33 20

Changes in Soil Moisture Persistence in China over the Past 40 Years under a Warming Climate

View More View Less
  • 1 Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • 2 Met Office Hadley Centre, Exeter, United Kingdom
  • 3 University of Chinese Academy of Sciences, Beijing, China
© Get Permissions
Restricted access

Abstract

Variability in soil moisture has implications for regional terrestrial environments under a warming climate. This paper focuses on the spatiotemporal variability in the intra-annual persistence of soil moisture in China using the fifth-generation reanalysis dataset by the European Centre for Medium-Range Weather Forecasts for the period 1979–2018. The results show that in China, the mean intra-annual persistence in the humid to arid zones increased from 60 to 115 days in the lower layer but decreased from 19 to 13 days and from 25 to 14 days in the upper and root layers, respectively. However, these changes were strongly attenuated in extremely dry and wet regions due to the scarcity of soil moisture anomalies. Large changes in persistence occurred in the lower soil layer in dryland areas, with a mean difference of up to 40 days between the 2010s and the 1980s. Overall increasing trends dominated the large-scale spatial features, despite regional decreases in the eastern arid zone and the North and Northeast China plains. In the root layer, the two plains experienced an expanded decrease while on the Tibetan Plateau it was dominated by decadal variability. These contrasting changes between the lower and root layers along the periphery of the transition zone was a reflection of the enhanced soil hydrological cycle in the root layer. The enhanced persistence in drylands lower layer is an indication of the intensified impacts of soil moisture anomalies (e.g., droughts) on terrestrial water cycle. These findings may help the understanding of climate change impacts on terrestrial environments.

Denotes content that is immediately available upon publication as open access.

Corresponding author: Mingxing Li, limx@tea.ac.cn

Abstract

Variability in soil moisture has implications for regional terrestrial environments under a warming climate. This paper focuses on the spatiotemporal variability in the intra-annual persistence of soil moisture in China using the fifth-generation reanalysis dataset by the European Centre for Medium-Range Weather Forecasts for the period 1979–2018. The results show that in China, the mean intra-annual persistence in the humid to arid zones increased from 60 to 115 days in the lower layer but decreased from 19 to 13 days and from 25 to 14 days in the upper and root layers, respectively. However, these changes were strongly attenuated in extremely dry and wet regions due to the scarcity of soil moisture anomalies. Large changes in persistence occurred in the lower soil layer in dryland areas, with a mean difference of up to 40 days between the 2010s and the 1980s. Overall increasing trends dominated the large-scale spatial features, despite regional decreases in the eastern arid zone and the North and Northeast China plains. In the root layer, the two plains experienced an expanded decrease while on the Tibetan Plateau it was dominated by decadal variability. These contrasting changes between the lower and root layers along the periphery of the transition zone was a reflection of the enhanced soil hydrological cycle in the root layer. The enhanced persistence in drylands lower layer is an indication of the intensified impacts of soil moisture anomalies (e.g., droughts) on terrestrial water cycle. These findings may help the understanding of climate change impacts on terrestrial environments.

Denotes content that is immediately available upon publication as open access.

Corresponding author: Mingxing Li, limx@tea.ac.cn
Save