• An, S. I., and F.-F. Jin, 2001: Collective role of thermocline and zonal advective feedbacks in the ENSO mode. J. Climate, 14, 34213432, https://doi.org/10.1175/1520-0442(2001)014<3421:CROTAZ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Y. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banacos, P. C., and D. M. Schultz, 2005: The use of moisture flux convergence in forecasting convective initiation: Historical and operational perspectives. Wea. Forecasting, 20, 351366, https://doi.org/10.1175/WAF858.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blalock, H., 1961: Causal Inferences in Nonexperimental Research. The University of North Carolina Press, 193 pp.

  • Cai, W., P. van Rensch, T. Cowan, and H. H. Hendon, 2011: Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall. J. Climate, 24, 39103923, https://doi.org/10.1175/2011JCLI4129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, G., T. W. Giambelluca, D. E. Stevens, and T. A. Schroeder, 2007: Inversion variability in the Hawaiian trade wind regime. J. Climate, 20, 11451160, https://doi.org/10.1175/JCLI4033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y. R., and P.-S. Chu, 2014: Trends in precipitation extremes and return levels in the Hawaiian Islands under a changing climate. Int. J. Climatol., 34, 39133925, https://doi.org/10.1002/joc.3950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 41434158, https://doi.org/10.1175/JCLI4953.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, P.-S., 1989: Hawaiian drought and Southern Oscillation. Int. J. Climatol., 9, 619631, https://doi.org/10.1002/joc.3370090606.

  • Chu, P.-S., 1995: Hawaii rainfall anomalies and El Niño. J. Climate, 8, 16971703, https://doi.org/10.1175/1520-0442(1995)008<1697:HRAAEN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, P.-S., and H. Chen, 2005: Interannual and interdecadal rainfall variations in the Hawaiian Islands. J. Climate, 18, 47964813, https://doi.org/10.1175/JCLI3578.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, P.-S., A. J. Nash, and F. Porter, 1993: Diagnostic studies of two contrasting rainfall episodes in Hawaii: Dry 1981 and wet 1982. J. Climate, 6, 14571462, https://doi.org/10.1175/1520-0442(1993)006<1457:DSOTCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, P.-S., Y. R. Chen, and T. A. Schroeder, 2010: Changes in precipitation extremes in the Hawaiian Islands in a warming climate. J. Climate, 23, 48814900, https://doi.org/10.1175/2010JCLI3484.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaz, H. F., and T. W. Giambelluca, 2012: Changes in atmospheric circulation patterns associated with high and low rainfall regimes in the Hawaiian Islands region on multiple time scales. Global Planet. Change, 98–99, 97108, https://doi.org/10.1016/j.gloplacha.2012.08.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frazier, A. G., T. W. Giambelluca, H. F. Diaz, and H. L. Needham, 2016: Comparison of geostatistical approaches to spatially interpolate month-year rainfall for the Hawaiian Islands. Int. J. Climatol., 36, 14591470, https://doi.org/10.1002/joc.4437.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giambelluca, T. W., Q. Chen, A. G. Frazier, J. P. Price, Y. Chen, P.-S. Chu, J. K. Eischeid, and D. M. Delparte, 2013: Online rainfall Atlas of Hawai’i. Bull. Amer. Meteor. Soc., 94, 313316, https://doi.org/10.1175/BAMS-D-11-00228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., M.-C. Wu, and P.-S. Chu, 1984: Towards the monitoring and prediction of northeast Brazil drought. Quart. J. Roy. Meteor. Soc., 110, 411425, https://doi.org/10.1002/qj.49711046407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829, https://doi.org/10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2015: Extended reconstructed sea surface temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911930, https://doi.org/10.1175/JCLI-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kao, H., and J. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, https://doi.org/10.1175/2008JCLI2309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karamperidou, C., P. N. Di Nezio, A. Timmermann, F.-F. Jin, and K. M. Cobb, 2015: The response of ENSO flavors to mid-Holocene climate: Implications for proxy interpretation. Paleoceanography, 30, 527547, https://doi.org/10.1002/2014PA002742.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S. T., J. Yu, A. Kumar, and H. Wang, 2012: Examination of the two types of ENSO in the NCEP CFS model and its extratropical associations. Mon. Wea. Rev., 140, 19081923, https://doi.org/10.1175/MWR-D-11-00300.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J., F. Jin, and S. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515, https://doi.org/10.1175/2008JCLI2624.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T., and M. J. McPhaden, 2010: Increasing intensity of El Niño in the central-equatorial Pacific. Geophys. Res. Lett., 37, L14603, https://doi.org/10.1029/2010GL044007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyons, S. W., 1982: Empirical orthogonal function analysis of Hawaiian rainfall. J. Appl. Meteor., 21, 17131729, https://doi.org/10.1175/1520-0450(1982)021<1713:EOFAOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., S.-I. Shin, and M. A. Alexander, 2011: Natural variation in ENSO flavors. Geophys. Res. Lett., 38, L14705, https://doi.org/10.1029/2011GL047658.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Connor, C. F., P.-S. Chu, P. Hsu, and K. Kodama, 2015: Variability of Hawaiian winter rainfall during La Niña events since 1956. J. Climate, 28, 78097823, https://doi.org/10.1175/JCLI-D-14-00638.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paek, H., J.-Y. Yu, and C. Qian, 2017: Why were the 2015-2016 and 1997-1998 extreme El Niños different? Geophys. Res. Lett., 44, 18481856, https://doi.org/10.1002/2016GL071515.

    • Search Google Scholar
    • Export Citation
  • Quenouille, M. H., 1952: Associated Measurements. Butterworth Scientific Publications, 242 pp.

  • Ren, H.-L., and F.-F. Jin, 2011: Niño indices for two types of ENSO. Geophys. Res. Lett., 38, L04704, https://doi.org/10.1029/2010GL046031.

  • Takahashi, K., A. Montecinos, K. Goubanova, and B. Dewitte, 2011: ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett., 38, L10704, https://doi.org/10.1029/2011GL047364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timm, O., and H. F. Diaz, 2009: Synoptic-statistical approach to regional downscaling of IPCC twenty-first-century climate projection: Seasonal rainfall over the Hawaiian Islands. J. Climate, 22, 42614280, https://doi.org/10.1175/2009JCLI2833.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., J. M. Wallace, and D. S. Battisti, 2003: The seasonal footprinting mechanism in the Pacific: Implications for ENSO. J. Climate, 16, 26682675, https://doi.org/10.1175/1520-0442(2003)016<2668:TSFMIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 704 pp.

  • Yeh, S. H., J. S. Kug, B. Dewitte, M. H. Kwon, B. P. Kirtman, and F. F. Jin, 2009: El Niño in a changing climate. Nature, 461, 511514, https://doi.org/10.1038/nature08316.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 120 120 103
Full Text Views 14 14 10
PDF Downloads 22 22 13

Hawaiian Regional Climate Variability during Two Types of El Niño

View More View Less
  • 1 Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii
© Get Permissions
Restricted access

Abstract

The large-scale atmospheric circulation of the North Pacific associated with two types of El Niño—the eastern Pacific (EP) and central Pacific (CP)—is studied in relation to Hawaiian winter (December–February) rainfall and temperature. The eastern and central equatorial Pacific undergo active convective heating during EP El Niño winters. The local Hadley circulation is enhanced and an upper-level westerly jet stream of the North Pacific is elongated eastward. Due to the impact of both phenomena, stronger anomalous descending motion, moisture flux divergence anomalies near Hawaii, and reduction of easterly trade winds, which are characteristic of EP winters, are unfavorable for winter rainfall in Hawaii. As a result of this robust signal, dry conditions prevail in Hawaii and the standard deviation of rainfall during EP winters is smaller than the climatology. For CP winters, the maximum equatorial ocean warming is weaker and shifted westward to near the date line. The subtropical jet stream retreats westward relative to EP winters and the anomalously sinking motion near Hawaii is variable and generally weaker. Although the anomalous moisture flux divergence still exists over the subtropical North Pacific, its magnitude is weaker relative to EP winters. Without strong external forcing, rainfall in the Hawaiian Islands during CP winters is close to the long-term mean. The spread of rainfall from one CP event to another is also larger. The near-surface minimum temperature from three stations in Hawaii reveals cooling during EP winters and slight warming during CP winters.

Corresponding author: Pao-Shin Chu, chu@hawaii.edu

Abstract

The large-scale atmospheric circulation of the North Pacific associated with two types of El Niño—the eastern Pacific (EP) and central Pacific (CP)—is studied in relation to Hawaiian winter (December–February) rainfall and temperature. The eastern and central equatorial Pacific undergo active convective heating during EP El Niño winters. The local Hadley circulation is enhanced and an upper-level westerly jet stream of the North Pacific is elongated eastward. Due to the impact of both phenomena, stronger anomalous descending motion, moisture flux divergence anomalies near Hawaii, and reduction of easterly trade winds, which are characteristic of EP winters, are unfavorable for winter rainfall in Hawaii. As a result of this robust signal, dry conditions prevail in Hawaii and the standard deviation of rainfall during EP winters is smaller than the climatology. For CP winters, the maximum equatorial ocean warming is weaker and shifted westward to near the date line. The subtropical jet stream retreats westward relative to EP winters and the anomalously sinking motion near Hawaii is variable and generally weaker. Although the anomalous moisture flux divergence still exists over the subtropical North Pacific, its magnitude is weaker relative to EP winters. Without strong external forcing, rainfall in the Hawaiian Islands during CP winters is close to the long-term mean. The spread of rainfall from one CP event to another is also larger. The near-surface minimum temperature from three stations in Hawaii reveals cooling during EP winters and slight warming during CP winters.

Corresponding author: Pao-Shin Chu, chu@hawaii.edu
Save