• Albern, N., A. Voigt, and J. G. Pinto, 2019: Cloud-radiative impact on the regional responses of the midlatitude jet streams and storm tracks to global warming. J. Adv. Model. Earth Syst., 11, 19401958, https://doi.org/10.1029/2018MS001592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and L. Polvani, 2013: Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models. J. Climate, 26, 71177135, https://doi.org/10.1175/JCLI-D-12-00536.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., N. W. Barnes, and L. M. Polvani, 2014: Delayed Southern Hemisphere climate change induced by stratospheric ozone recovery, as projected by the CMIP5 models. J. Climate, 27, 852867, https://doi.org/10.1175/JCLI-D-13-00246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bender, F. A. M., V. Ramanathan, and G. Tselioudis, 2012: Changes in extratropical storm track cloudiness 1983–2008: Observational support for a poleward shift. Climate Dyn., 38, 20372053, https://doi.org/10.1007/s00382-011-1065-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butler, A. H., D. W. J. Thompson, and R. Heikes, 2010: The steady-state atmospheric circulation response to climate change–like thermal forcings in a simple general circulation model. J. Climate, 23, 34743496, https://doi.org/10.1175/2010JCLI3228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caldeira, K., and N. P. Myhrvold, 2013: Projections of the pace of warming following an abrupt increase in atmospheric carbon dioxide concentration. Environ. Res. Lett., 8, 034039, https://doi.org/10.1088/1748-9326/8/3/034039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceppi, P., and D. L. Hartmann, 2013: On the speed of the eddy-driven jet and the width of the Hadley cell in the Southern Hemisphere. J. Climate, 26, 34503465, https://doi.org/10.1175/JCLI-D-12-00414.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceppi, P., and T. G. Shepherd, 2017: Contributions of climate feedbacks to changes in atmospheric circulation. J. Climate, 30, 90979118, https://doi.org/10.1175/JCLI-D-17-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceppi, P., and T. G. Shepherd, 2019: The role of the stratospheric polar vortex for the austral jet response to greenhouse gas forcing. Geophys. Res. Lett., 46, 69726979, https://doi.org/10.1029/2019GL082883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceppi, P., M. D. Zelinka, and D. L. Hartmann, 2014: The response of the Southern Hemispheric eddy-driven jet to future changes in shortwave radiation in CMIP5. Geophys. Res. Lett., 41, 32443250, https://doi.org/10.1002/2014GL060043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceppi, P., G. Zappa, T. G. Shepherd, and J. M. Gregory, 2018: Fast and slow components of the extratropical atmospheric circulation response to CO2 forcing. J. Climate, 31, 10911105, https://doi.org/10.1175/JCLI-D-17-0323.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., and I. M. Held, 2007: Phase speed spectra and the recent poleward shift of Southern Hemisphere surface westerlies. Geophys. Res. Lett., 34, L21805, https://doi.org/10.1029/2007GL031200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, J., S. W. Son, and R. J. Park, 2019: Aerosol versus greenhouse gas impacts on Southern Hemisphere general circulation changes. Climate Dyn., 52, 41274142, https://doi.org/10.1007/s00382-018-4370-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • Dennison, F. W., A. McDonald, and O. Morgenstern, 2016: The influence of ozone forcing on blocking in the Southern Hemisphere. J. Geophys. Res. Atmos., 121, 14 35814 371, https://doi.org/10.1002/2016JD025033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B., J. M. Gregory, and R. T. Sutton, 2009: Understanding land–sea warming contrast in response to increasing greenhouse gases. Part I: Transient adjustment. J. Climate, 22, 30793097, https://doi.org/10.1175/2009JCLI2652.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fels, S. B., J. D. Mahlman, M. D. Schwarzkopf, and R. W. Sinclair, 1980: Stratospheric sensitivity to perturbations in ozone and carbon dioxide: Radiative and dynamical response. J. Atmos. Sci., 37, 22652297, https://doi.org/10.1175/1520-0469(1980)037<2265:SSTPIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., D. W. Waugh, and L. M. Polvani, 2015: Recent Hadley cell expansion: The role of internal atmospheric variability in reconciling modeled and observed trends. Geophys. Res. Lett., 42, 10 82410 831, https://doi.org/10.1002/2015GL066942.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., J. C. Fyfe, and D. E. Parker, 2013: Attribution of observed sea level pressure trends to greenhouse gas, aerosol, and ozone changes. Geophys. Res. Lett., 40, 23022306, https://doi.org/10.1002/grl.50500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and L. M. Polvani, 2014a: Is climate sensitivity related to dynamical sensitivity? A Southern Hemisphere perspective. Geophys. Res. Lett., 41, 534540, https://doi.org/10.1002/2013GL058466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and L. M. Polvani, 2014b: Southern Hemisphere cloud-dynamics biases in CMIP5 models and their implications for climate projections. J. Climate, 27, 60746092, https://doi.org/10.1175/JCLI-D-14-00113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and L. M. Polvani, 2014c: The response of midlatitude jets to increased CO2: Distinguishing the roles of sea surface temperature and direct radiative forcing. Geophys. Res. Lett., 41, 68636871, https://doi.org/10.1002/2014GL061638.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and L. M. Polvani, 2016: Is climate sensitivity related to dynamical sensitivity? J. Geophys. Res. Atmos., 121, 51595176, https://doi.org/10.1002/2015JD024687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and L. M. Polvani, 2017: Understanding the time scales of the tropospheric circulation response to abrupt CO2 forcing in the Southern Hemisphere: Seasonality and the role of the stratosphere. J. Climate, 30, 84978515, https://doi.org/10.1175/JCLI-D-16-0849.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harvey, B. J., L. C. Shaffrey, and T. J. Woollings, 2014: Equator-to-pole temperature differences and the extra-tropical storm track responses of the CMIP5 climate models. Climate Dyn., 43, 11711182, https://doi.org/10.1007/s00382-013-1883-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harvey, B. J., L. C. Shaffrey, and T. J. Woollings, 2015: Deconstructing the climate change response of the Northern Hemisphere wintertime storm tracks. Climate Dyn., 45, 28472860, https://doi.org/10.1007/s00382-015-2510-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2012: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. C. B. Field et al., Eds., Cambridge University Press, 582 pp.

  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. T. F. Stocker et al., Eds., Cambridge University Press, 1535 pp.

  • Joshi, M. M., J. M. Gregory, M. J. Webb, D. M. H. Sexton, and T. C. Johns, 2008: Mechanisms for the land/sea warming contrast exhibited by simulations of climate change. Climate Dyn., 30, 455465, https://doi.org/10.1007/s00382-007-0306-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karpechko, A. Y., A. C. Maycock, M. Abalos, H. Akiyoshi, J. M. Arblaster, C. I. Garfinkel, K. H. Rosenhof, and M. Sigmond, 2018: Stratospheric ozone changes and climate. Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project Rep. 58, World Meteorological Organization, 44–46.

  • Kushner, P. J., I. M. Held, and T. L. Delworth, 2001: Southern Hemisphere atmospheric circulation response to global warming. J. Climate, 14, 22382249, https://doi.org/10.1175/1520-0442(2001)014<0001:SHACRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C., and Coauthors, 2018: Midlatitude atmospheric circulation responses under 1.5 and 2.0°C warming and implications for regional impacts. Earth Syst. Dyn., 9, 359382, https://doi.org/10.5194/esd-9-359-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., 2003: Trends in the southern annular mode from observations and reanalyses. J. Climate, 16, 41344143, https://doi.org/10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maycock, A. C., M. M. Joshi, K. P. Shine, and A. A. Scaife, 2013: The circulation response to idealized changes in stratospheric water vapor. J. Climate, 26, 545561, https://doi.org/10.1175/JCLI-D-12-00155.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGraw, M. C., and E. A. Barnes, 2016: Seasonal sensitivity of the eddy-driven jet to tropospheric heating in an idealized AGCM. J. Climate, 29, 52235240, https://doi.org/10.1175/JCLI-D-15-0723.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, B. F., P. Pettré, and I. Simmonds, 2002: Effects of changing baroclinicity on the Southern Hemisphere extratropical circulation. Quart. J. Roy. Meteor. Soc., 128, 18071826, https://doi.org/10.1256/003590002320603421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myhre, G., and Coauthors, 2017: PDRMIP: A precipitation driver and response model intercomparison project—Protocol and preliminary results. Bull. Amer. Meteor. Soc., 98, 11851198, https://doi.org/10.1175/BAMS-D-16-0019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., and A. Shimpo, 2004: Seasonal variations in the Southern Hemisphere storm tracks and jet streams as revealed in a reanalysis dataset. J. Climate, 17, 18281844, https://doi.org/10.1175/1520-0442(2004)017<1828:SVITSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ndarana, T., D. W. Waugh, L. M. Polvani, G. J. P. Correa, and E. P. Gerber, 2012: Antarctic ozone depletion and trends in tropopause Rossby wave breaking. Atmos. Sci. Lett., 13, 164168, https://doi.org/10.1002/asl.384.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nie, Y., Y. Zhang, G. Chen, and X.-Q. Yang, 2016: Delineating the barotropic and baroclinic mechanisms in the midlatitude eddy-driven jet response to lower-tropospheric thermal forcing. J. Atmos. Sci., 73, 429448, https://doi.org/10.1175/JAS-D-15-0090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., D. W. Waugh, G. J. P. Correa, and S. W. Son, 2011: Stratospheric ozone depletion: The main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J. Climate, 24, 795812, https://doi.org/10.1175/2010JCLI3772.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Previdi, M., and B. G. Liepert, 2007: Annular modes and Hadley cell expansion under global warming. Geophys. Res. Lett., 34, L22701, https://doi.org/10.1029/2007GL031243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, T. B., B. H. Samset, T. Andrews, G. Myhre, and P. M. Forster, 2016: An assessment of precipitation adjustment and feedback computation methods. J. Geophys. Res. Atmos., 121, 11 60811 619, https://doi.org/10.1002/2016JD025625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, T. B., and Coauthors, 2019: Efficacy of climate forcings in PDRMIP models. J. Geophys. Res. Atmos., 124, 12 82412 844, https://doi.org/10.1029/2019JD030581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, W. A., 2006: On the self-maintenance of midlatitude jets. J. Atmos. Sci., 63, 21092122, https://doi.org/10.1175/JAS3732.1.

  • Rotstayn, L. D., 2013: Projected effects of declining anthropogenic aerosols on the southern annular mode. Environ. Res. Lett., 8, 044028, https://doi.org/10.1088/1748-9326/8/4/044028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., and Coauthors, 2014: Declining aerosols in CMIP5 projections: Effects on atmospheric temperature structure and midlatitude jets. J. Climate, 27, 69606977, https://doi.org/10.1175/JCLI-D-14-00258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., 2019: An observational constraint on CMIP5 projections of the East African long rains and southern Indian Ocean warming. Geophys. Res. Lett., 46, 60506058, https://doi.org/10.1029/2019GL082847.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., and R. Chadwick, 2018: Causes of the uncertainty in projections of tropical terrestrial rainfall change: East Africa. J. Climate, 31, 59775995, https://doi.org/10.1175/JCLI-D-17-0830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2013: Human and natural influences on the changing thermal structure of the atmosphere. Proc. Natl. Acad. Sci. USA, 110, 17 23517 240, https://doi.org/10.1073/pnas.1305332110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and A. Voigt, 2016: Understanding the links between subtropical and extratropical circulation responses to climate change using aquaplanet model simulations. J. Climate, 29, 66376657, https://doi.org/10.1175/JCLI-D-16-0049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and Coauthors, 2016: Storm track processes and the opposing influences of climate change. Nat. Geosci., 9, 656664, https://doi.org/10.1038/ngeo2783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., S. Bony, O. Boucher, C. Bretherton, P. M. Forster, J. M. Gregory, and B. Stevens, 2015: Adjustments in the forcing-feedback framework for understanding climate change. Bull. Amer. Meteor. Soc., 96, 217228, https://doi.org/10.1175/BAMS-D-13-00167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., and L. M. Polvani, 2016: Revisiting the relationship between jet position, forced response, and annular mode variability in the southern midlatitudes. Geophys. Res. Lett., 43, 28962903, https://doi.org/10.1002/2016GL067989.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, C. J., and Coauthors, 2018: Understanding rapid adjustments to diverse forcing agents. Geophys. Res. Lett., 45, 12 02312 031, https://doi.org/10.1029/2018GL079826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Staten, P. W., J. J. Rutz, T. Reichler, and J. Lu, 2012: Breaking down the tropospheric circulation response by forcing. Climate Dyn., 39, 23612375, https://doi.org/10.1007/s00382-011-1267-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steptoe, H., L. J. Wilcox, and E. J. Highwood, 2016: Is there a robust effect of anthropogenic aerosols on the southern annular mode? J. Geophys. Res. Atmos., 121, 10 02910 042, https://doi.org/10.1002/2015JD024218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steptoe, H., S. E. O. Jones, and H. Fox, 2018: Correlations between extreme atmospheric hazards and global teleconnections: Implications for multihazard resilience. Rev. Geophys., 56, 5078, https://doi.org/10.1002/2017RG000567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stjern, C. W., and Coauthors, 2017: Rapid adjustments cause weak surface temperature response to increased black carbon concentrations. J. Geophys. Res. Atmos., 122, 11 46211 481, https://doi.org/10.1002/2017JD027326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tamarin-Brodsky, T., and Y. Kaspi, 2017: Enhanced poleward propagation of storms under climate change. Nat. Geosci., 10, 908913, https://doi.org/10.1038/s41561-017-0001-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, T., and Coauthors, 2019: Comparison of effective radiative forcing calculations using multiple methods, drivers, and models. J. Geophys. Res. Atmos., 124, 43824394, https://doi.org/10.1029/2018JD030188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895899, https://doi.org/10.1126/science.1069270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigt, A., and T. A. Shaw, 2015: Circulation response to warming shaped by radiative changes of clouds and water vapour. Nat. Geosci., 8, 102106, https://doi.org/10.1038/ngeo2345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigt, A., and T. A. Shaw, 2016: Impact of regional atmospheric cloud radiative changes on shifts of the extratropical jet stream in response to global warming. J. Climate, 29, 83998421, https://doi.org/10.1175/JCLI-D-16-0140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigt, A., N. Albern, and G. Papavasileiou, 2019: The atmospheric pathway of the cloud-radiative impact on the circulation response to global warming: Important and uncertain. J. Climate, 32, 30513067, https://doi.org/10.1175/JCLI-D-18-0810.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701, https://doi.org/10.1029/2005GL023684.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, X., R. J. Allen, T. Wood, and A. C. Maycock, 2020: Tropical belt width proportionately more sensitive to aerosols than greenhouse gases. Geophys. Res. Lett., 47, e2019GL086425, https://doi.org/10.1029/2019GL086425.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 121 121 43
Full Text Views 40 40 11
PDF Downloads 48 48 13

The Southern Hemisphere Midlatitude Circulation Response to Rapid Adjustments and Sea Surface Temperature Driven Feedbacks

View More View Less
  • 1 School of Earth and Environment, University of Leeds, Leeds, United Kingdom
  • 2 Met Office Hadley Centre, Exeter, United Kingdom
  • 3 Institut Pierre-Simon Laplace, Sorbonne Université, Paris, France
  • 4 CICERO Center for International Climate and Environmental Research, Oslo, Norway
  • 5 Norwegian Meteorological Institute, Oslo, Norway
  • 6 NCAR/UCAR, Boulder, Colorado
  • 7 Universität Leipzig, Leipzig, Germany
  • 8 Kyushu University, Fukuoka, Japan
  • 9 Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford, United Kingdom
© Get Permissions
Restricted access

Abstract

Rapid adjustments—the response of meteorology to external forcing while sea surface temperatures (SST) and sea ice are held fixed—can affect the midlatitude circulation and contribute to long-term forced circulation responses in climate simulations. This study examines rapid adjustments in the Southern Hemisphere (SH) circulation using nine models from the Precipitation Driver and Response Model Intercomparison Project (PDRMIP), which perform fixed SST and coupled ocean experiments for five perturbations: a doubling of carbon dioxide (2xCO2), a tripling of methane (3xCH4), a fivefold increase in sulfate aerosol (5xSO4), a tenfold increase in black carbon aerosol (10xBC), and a 2% increase in solar constant (2%Sol). In the coupled experiments, the SH eddy-driven jet shifts poleward and strengthens for forcings that produce global warming (and vice versa for 5xSO4), with the strongest response found in austral summer. In austral winter, the responses project more strongly onto a change in jet strength. For 10xBC, which induces strong shortwave absorption, the multimodel mean (MMM) rapid adjustment in DJF jet latitude is ~75% of the change in the coupled simulations. For the other forcings, which induce larger SST changes, the effect of SST-mediated feedbacks on the SH circulation is larger than the rapid adjustment. Nevertheless, for these perturbations the magnitude of the MMM jet shift due to the rapid adjustment is still around 20%–30% of that in the coupled experiments. The results demonstrate the need to understand the mechanisms for rapid adjustments in the midlatitude circulation, in addition to the effect of changing SSTs.

Current affiliation: Pacific Northwest National Laboratory, Richland, Washington.

Corresponding author: T. Wood, pm11tw@leeds.ac.uk

Abstract

Rapid adjustments—the response of meteorology to external forcing while sea surface temperatures (SST) and sea ice are held fixed—can affect the midlatitude circulation and contribute to long-term forced circulation responses in climate simulations. This study examines rapid adjustments in the Southern Hemisphere (SH) circulation using nine models from the Precipitation Driver and Response Model Intercomparison Project (PDRMIP), which perform fixed SST and coupled ocean experiments for five perturbations: a doubling of carbon dioxide (2xCO2), a tripling of methane (3xCH4), a fivefold increase in sulfate aerosol (5xSO4), a tenfold increase in black carbon aerosol (10xBC), and a 2% increase in solar constant (2%Sol). In the coupled experiments, the SH eddy-driven jet shifts poleward and strengthens for forcings that produce global warming (and vice versa for 5xSO4), with the strongest response found in austral summer. In austral winter, the responses project more strongly onto a change in jet strength. For 10xBC, which induces strong shortwave absorption, the multimodel mean (MMM) rapid adjustment in DJF jet latitude is ~75% of the change in the coupled simulations. For the other forcings, which induce larger SST changes, the effect of SST-mediated feedbacks on the SH circulation is larger than the rapid adjustment. Nevertheless, for these perturbations the magnitude of the MMM jet shift due to the rapid adjustment is still around 20%–30% of that in the coupled experiments. The results demonstrate the need to understand the mechanisms for rapid adjustments in the midlatitude circulation, in addition to the effect of changing SSTs.

Current affiliation: Pacific Northwest National Laboratory, Richland, Washington.

Corresponding author: T. Wood, pm11tw@leeds.ac.uk
Save