• Abraham, J. P., and Coauthors, 2013: A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change. Rev. Geophys., 51, 450483, https://doi.org/10.1002/rog.20022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abrahamsen, E. P., and Coauthors, 2019: Stabilization of dense Antarctic water supply to the Atlantic Ocean overturning circulation. Nat. Climate Change, 9, 742746, https://doi.org/10.1038/s41558-019-0561-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arblaster, J. M., and G. A. Meehl, 2006: Contributions of external forcings to southern annular mode trends. J. Climate, 19, 28962905, https://doi.org/10.1175/JCLI3774.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armitage, T. W. K., R. Kwok, A. F. Thompson, and G. Cunningham, 2018: Dynamic topography and sea level anomalies of the Southern Ocean: Variability and teleconnections. J. Geophys. Res. Oceans, 123, 613630, https://doi.org/10.1002/2017JC013534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armour, K. C., J. Marshall, J. R. Scott, A. Donohoe, and E. R. Newsom, 2016: Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat. Geosci., 9, 549554, https://doi.org/10.1038/ngeo2731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Azaneu, M., R. Kerr, M. M. Mata, and C. A. E. Garcia, 2013: Trends in the deep Southern Ocean (1958–2010): Implications for Antarctic Bottom Water properties and volume export. J. Geophys. Res. Oceans, 118, 42134227, https://doi.org/10.1002/jgrc.20303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., K. E. Trenberth, and E. Källén, 2013: Distinctive climate signals in reanalysis of global ocean heat content. Geophys. Res. Lett., 40, 17541759, https://doi.org/10.1002/grl.50382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Böning, C. W., A. Dispert, M. Visbeck, S. R. Rintoul, and F. U. Schwarzkopf, 2008: The response of the Antarctic Circumpolar Current to recent climate change. Nat. Geosci., 1, 864869, https://doi.org/10.1038/ngeo362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., and K.-K. Tung, 2014: Varying planetary heat sink led to global-warming slowdown and acceleration. Science, 345, 897903, https://doi.org/10.1126/science.1254937.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, L., J. Abraham, Z. Hausfather, and K. E. Trenberth, 2019: How fast are the oceans warming? Science, 363, 128129, https://doi.org/10.1126/science.aav7619.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cisewski, B., V. H. Strass, and H. Leach, 2011: Circulation and transport of water masses in the Lazarev Sea, Antarctica, during summer and winter 2006. Deep-Sea Res. I, 58, 186199, https://doi.org/10.1016/j.dsr.2010.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desbruyères, D. G., S. G. Purkey, E. L. McDonagh, G. C. Johnson, and B. A. King, 2016: Deep and abyssal ocean warming from 35 years of repeat hydrography. Geophys. Res. Lett., 43, 10 35610 365, https://doi.org/10.1002/2016GL070413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desbruyères, D. G., E. L. McDonagh, B. A. King, and V. Thierry, 2017: Global and full depth ocean temperature trends during the early twenty-first century from Argo and repeat hydrography. J. Climate, 30, 19851997, https://doi.org/10.1175/JCLI-D-16-0396.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., and P. M. Forster, 2018: An estimate of equilibrium climate sensitivity from interannual variability. J. Geophys. Res. Atmos., 123, 86348645, https://doi.org/10.1029/2018JD028481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donnelly, M., H. Leach, and V. Strass, 2017: Modification of the deep salinity-maximum in the Southern Ocean by circulation in the Antarctic Circumpolar Current and the Weddell Gyre. Ocean Dyn., 67, 813838, https://doi.org/10.1007/s10236-017-1054-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Driemel, A., and Coauthors, 2017: From pole to pole: 33 years of physical oceanography onboard R/V Polarstern. Earth Syst. Sci. Data, 9, 211220, https://doi.org/10.5194/essd-9-211-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durack, P. J., P. J. Gleckler, S. G. Purkey, G. C. Johnson, J. M. Lyman, and T. P. Boyer, 2018: Ocean warming: From the surface to the deep in observations and models. Oceanography, 31, 4151, https://doi.org/10.5670/oceanog.2018.227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fahrbach, E., G. Rohardt, M. Schröder, and V. Strass, 1994: Transport and structure of the Weddell Gyre. Ann. Geophys., 12, 840855, https://doi.org/10.1007/s00585-994-0840-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fahrbach, E., G. Rohardt, N. Scheele, M. Schröder, V. Strass, and A. Wisotzki, 1995: Formation and discharge of deep and bottom water in the northwestern Weddell Sea. J. Mar. Res., 53, 515538, https://doi.org/10.1357/0022240953213089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fahrbach, E., M. Hoppema, G. Rohardt, M. Schröder, and A. Wisotzki, 2004: Decadal-scale variations of water mass properties in the deep Weddell Sea. Ocean Dyn., 54, 7791, https://doi.org/10.1007/s10236-003-0082-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fahrbach, E., M. Hoppema, G. Rohardt, O. Boebel, O. Klatt, and A. Wisotzki, 2011: Warming of deep and abyssal water masses along the Greenwich meridian on decadal time scales: The Weddell Gyre as a beat buffer. Deep-Sea Res. II, 58, 25092523, https://doi.org/10.1016/j.dsr2.2011.06.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foster, T., and E. Carmack, 1976: Frontal zone mixing and Antarctic Bottom Water formation in the southern Weddell Sea. Deep-Sea Res. Oceanogr. Abstr., 23, 301317, https://doi.org/10.1016/0011-7471(76)90872-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frölicher, T. L., J. L. Sarmiento, D. J. Paynter, J. P. Dunne, J. P. Krasting, and M. Winton, 2015: Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. J. Climate, 28, 862886, https://doi.org/10.1175/JCLI-D-14-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., O. A. Saenko, K. Zickfeld, M. Eby, and A. J. Weaver, 2007: The role of poleward-intensifying winds on Southern Ocean warming. J. Climate, 20, 53915400, https://doi.org/10.1175/2007JCLI1764.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., and Coauthors, 2016: Making sense of the early-2000s warming slowdown. Nat. Climate Change, 6, 224228, https://doi.org/10.1038/nclimate2938.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García, M. A., I. Bladé, A. Cruzado, Z. Velásquez, H. García, J. Puigdefàbregas, and J. Sospedra, 2002: Observed variability of water properties and transports on the World Ocean Circulation Experiment SR1b section across the Antarctic Circumpolar Current. J. Geophys. Res., 107, 3162, https://doi.org/10.1029/2000JC000277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1973: Circulation and bottom water production in the Weddell Sea. Deep-Sea Res. Oceanogr. Abstr., 20, 111140, https://doi.org/10.1016/0011-7471(73)90048-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GISTEMP Team, 2020: GISS Surface Temperature Analysis (GISTEMP), version 4. NASA Goddard Institute for Space Studies, accessed 20 March 2020, https://data.giss.nasa.gov/gistemp/.

  • Gleckler, P. J., P. J. Durack, R. J. Stouffer, G. C. Johnson, and C. E. Forest, 2016: Industrial-era global ocean heat uptake doubles in recent decades. Nat. Climate Change, 6, 394398, https://doi.org/10.1038/nclimate2915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 1967. Structure of Antarctic waters between 20°W and 170°W. Antarctic Map Folio Series, V. C. Bushnell, Ed., American Geographical Society, Folio 6, 14 plates, 10 pp.

  • Gordon, A. L., B. A. Huber, H. Hellmer, and A. Ffield, 1993: Deep and bottom water of the Weddell Sea’s western rim. Science, 262, 9597, https://doi.org/10.1126/science.262.5130.95.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, P. Kharecha, and K. von Schuckmann, 2011: Earth’s energy imbalance and implications. Atmos. Chem. Phys., 11, 13 42113 449, https://doi.org/10.5194/acp-11-13421-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hellmer, H. H., F. Kauker, R. Timmermann, and T. Hattermann, 2017: The fate of the southern Weddell Sea continental shelf in a warming climate. J. Climate, 30, 43374350, https://doi.org/10.1175/JCLI-D-16-0420.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoppema, M., K. Bakker, S. M. A. C. van Heuven, J. C. van Ooijen, and H. J. W. de Baar, 2015: Distributions, trends and inter-annual variability of nutrients along a repeat section through the Weddell Sea (1996–2011). Mar. Chem., 177, 545553, https://doi.org/10.1016/j.marchem.2015.08.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobs, S. S., and C. F. Giulivi, 2010: Large multidecadal salinity trends near the Pacific–Antarctic continental margin. J. Climate, 23, 45084524, https://doi.org/10.1175/2010JCLI3284.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., J. M. Lyman, and N. G. Loeb, 2016: Improving estimates of Earth’s energy imbalance. Nat. Climate Change, 6, 639640, https://doi.org/10.1038/nclimate3043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jullion, L., S. C. Jones, A. C. Naveira Garabato, and M. P. Meredith, 2010: Wind-controlled export of Antarctic Bottom Water from the Weddell Sea. Geophys. Res. Lett., 37, L09609, https://doi.org/10.1029/2010GL042822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jullion, L., A. C. Naveira Garabato, M. P. Meredith, P. R. Holland, P. Courtois, and B. A. King, 2013: Decadal freshening of the Antarctic Bottom Water exported from the Weddell Sea. J. Climate, 26, 81118125, https://doi.org/10.1175/JCLI-D-12-00765.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jullion, L., and Coauthors, 2014: The contribution of the Weddell Gyre to the lower limb of the global overturning circulation. J. Geophys. Res. Oceans, 119, 33573377, https://doi.org/10.1002/2013JC009725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klöwer, M., T. Jung, G. König-Langlo, and T. Semmler, 2014: Aspects of weather parameters at Neumayer station, Antarctica, and their representation in reanalysis and climate model data. Meteor. Z., 22, 699709, https://doi.org/10.1127/0941-2948/2013/0505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403407, https://doi.org/10.1038/nature12534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latif, M., T. Martin, A. Reintges, and W. Park, 2017: Southern Ocean decadal variability and predictability. Curr. Climate Change Rep., 3, 163173, https://doi.org/10.1007/s40641-017-0068-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., W. Park, M. Baringer, A. L. Gordon, B. Huber, and Y. Liu, 2015: Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus. Nat. Geosci., 8, 445449, https://doi.org/10.1038/ngeo2438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenssen, N., G. Schmidt, J. Hansen, M. Menne, A. Persin, R. Ruedy, and D. Zyss, 2019: Improvements in the GISTEMP uncertainty model. J. Geophys. Res. Atmos., 124, 63076326, https://doi.org/10.1029/2018JD029522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levitus, S., J. Antonov, and T. Boyer, 2005: Warming of the world ocean, 1955–2003. Geophys. Res. Lett., 32, L02604, https://doi.org/10.1029/2004GL021592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levitus, S., and Coauthors, 2012: World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett., 39, L10603, https://doi.org/10.1029/2012GL051106.

    • Search Google Scholar
    • Export Citation
  • Lewandowsky, S., J. S. Risbey, and N. Oreskes, 2016: The “pause” in global warming: Turning a routine fluctuation into a problem for science. Bull. Amer. Meteor. Soc., 97, 723733, https://doi.org/10.1175/BAMS-D-14-00106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, N., and J. Curry, 2018: The impact of recent forcing and ocean heat uptake data on estimates of climate sensitivity. J. Climate, 31, 60516071, https://doi.org/10.1175/JCLI-D-17-0667.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liau, J.-R., and B. F. Chao, 2017: Variation of Antarctic Circumpolar Current and its intensification in relation to the southern annular mode detected in the time-variable gravity signals by GRACE satellite. Earth Planets Space, 69, 93, https://doi.org/10.1186/s40623-017-0678-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, X., X. Zhai, Z. Wang, and D. R. Munday, 2018: Mean, variability, and trend of Southern Ocean wind stress: Role of wind fluctuations. J. Climate, 31, 35573573, https://doi.org/10.1175/JCLI-D-17-0481.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W., J. Lu, J.-P. Xie, and A. V. Fedorov, 2018: Southern Ocean heat uptake, redistribution, and storage in a warming climate: The role of meridional overturning circulation. J. Climate, 31, 47274743, https://doi.org/10.1175/JCLI-D-17-0761.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., and K. Speer, 2012: Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci., 5, 171180, https://doi.org/10.1038/ngeo1391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medhaug, I., M. B. Stolpe, E. M. Fischer, and R. Knutti, 2017: Reconciling controversies about the ‘global warming hiatus.’ Nature, 545, 4147, https://doi.org/10.1038/nature22315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menezes, V. V., A. M. Macdonald, and C. Schatzman, 2017: Accelerated freshening of Antarctic Bottom Water over the last decade in the southern Indian Ocean. Sci. Adv., 3, e1601426, https://doi.org/10.1126/sciadv.1601426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., and A. M. Hogg, 2006: Circumpolar response of Southern Ocean eddy activity to a change in the southern annular mode. Geophys. Res. Lett., 33, L16608, https://doi.org/10.1029/2006GL026499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., and Coauthors, 2019: Rapid mixing and exchange of deep-ocean waters in an abyssal boundary current. Proc. Natl. Acad. Sci. USA, 116, 13 23313 238, https://doi.org/10.1073/pnas.1904087116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA, 2020: NOAA National Centers for Environmental information. Climate at a glance: Global time series, accessed 20 March 2020, https://www.ncdc.noaa.gov/cag/.

  • Orsi, A. H., W. D. Nowlin Jr., and T. Whitworth III, 1993: On the circulation and stratification of the Weddell Gyre. Deep-Sea Res. I, 40, 169203, https://doi.org/10.1016/0967-0637(93)90060-G.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., G. C. Johnson, and J. L. Bullister, 1999: Circulation, mixing, and production of Antarctic Bottom Water. Prog. Oceanogr., 43, 55109, https://doi.org/10.1016/S0079-6611(99)00004-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., W. M. Smethie, and J. L. Bullister, 2002: On the total input of Antarctic waters to the deep ocean: A preliminary estimate from chlorofluorocarbon measurements. J. Geophys. Res., 107, 3122, https://doi.org/10.1029/2001JC000976.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, M. D., 2012: Climate and Earth’s energy flows. Surv. Geophys., 33, 351357, https://doi.org/10.1007/s10712-011-9165-8.

  • Palmer, M. D., D. J. McNeall, and N. J. Dunstone, 2011: Importance of the deep ocean for estimating decadal changes in Earth’s radiation balance. Geophys. Res. Lett., 38, L13707, https://doi.org/10.1029/2011GL047835.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., 2019: A 40-y record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic. Proc. Natl. Acad. Sci. USA, 116, 14 41414 423, https://doi.org/10.1073/pnas.1906556116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patara, L., and C. W. Böning, 2014: Abyssal ocean warming around Antarctica strengthens the Atlantic overturning circulation. Geophys. Res. Lett., 41, 39723978, https://doi.org/10.1002/2014GL059923.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purkey, S. G., and G. C. Johnson, 2010: Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budgets. J. Climate, 23, 63366351, https://doi.org/10.1175/2010JCLI3682.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purkey, S. G., and G. C. Johnson, 2013: Antarctic Bottom Water warming and freshening: Contributions to sea level rise, ocean freshwater budgets, and global heat gain. J. Climate, 26, 61056122, https://doi.org/10.1175/JCLI-D-12-00834.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purkey, S. G., W. M. Smethie, G. Gebbie, A. L. Gordon, R. E. Sonnerup, M. J. Warner, and J. L. Bullister, 2018: A synoptic view of the ventilation and circulation of Antarctic Bottom Water from chlorofluorocarbons and natural tracers. Annu. Rev. Mar. Sci., 10, 503527, https://doi.org/10.1146/annurev-marine-121916-063414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reeve, K., O. Boebel, T. Kanzow, V. Strass, G. Rohardt, and E. Fahrbach, 2016: A gridded data set of upper-ocean hydrographic properties in the Weddell Gyre obtained by objective mapping of Argo float measurements. Earth Syst. Sci. Data, 8, 1540, https://doi.org/10.5194/essd-8-15-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reeve, K., O. Boebel, V. Strass, T. Kanzow, and R. Gerdes, 2019: Horizontal circulation and volume transports in the Weddell Gyre derived from Argo float data. Prog. Oceanogr., 175, 263283, https://doi.org/10.1016/j.pocean.2019.04.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhein, M., and Coauthors, 2013: Observations: Ocean. Climate Change 2013: The Physical Science Basis. T. F. Stocker et al., Eds., Cambridge University Press, 255–315.

  • Rintoul, S. R., 2007: Rapid freshening of Antarctic Bottom Water formed in the Indian and Pacific Oceans. Geophys. Res Lett., 34, L06606, https://doi.org/10.1029/2006GL028550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sallée, J.-B., 2018: Southern Ocean warming. Oceanography, 31, 5262, https://doi.org/10.5670/oceanog.2018.215.

  • Schmitt, R. W., 2018: The ocean’s role in climate. Oceanography, 31, 3240, https://doi.org/10.5670/oceanog.2018.225.

  • Strass, V. H., and E. Nöthig, 1996: Seasonal shifts in ice edge phytoplankton blooms in the Barents Sea related to the water column stability. Polar Biol., 16, 409422, https://doi.org/10.1007/BF02390423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strass, V. H., H. Leach, H. Prandke, M. Donnelly, A. U. Bracher, and D. A. Wolf-Gladrow, 2017: The physical environmental conditions for biogeochemical differences along the Antarctic Circumpolar Current in the Atlantic sector during late austral summer 2012. Deep-Sea Res. II, 138, 625, https://doi.org/10.1016/j.dsr2.2016.05.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swart, N. C., S. T. Gille, J. C. Fyfe, and N. P. Gillett, 2018: Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion. Nat. Geosci., 11, 836841, https://doi.org/10.1038/s41561-018-0226-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 1996: Antarctic intermediate water in the South Atlantic. The South Atlantic: Present and Past Circulation, G. Wefer et al., Eds., Springer-Verlag, 219–238.

    • Crossref
    • Export Citation
  • Thompson, A. F., and K. J. Heywood, 2008: Frontal structure and transport in the northwestern Weddell Sea. Deep-Sea Res. I, 55, 12291251, https://doi.org/10.1016/j.dsr.2008.06.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2012: Tracking Earth’s energy: From El Niño to global warming. Surv. Geophys., 33, 413426, https://doi.org/10.1007/s10712-011-9150-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., G. J. Marshall, K. Clem, S. Colwell, T. Phillips, and H. Lu, 2020: Antarctic temperature variability and change from station data. Int. J. Climatol., 40, 29863007, https://doi.org/10.1002/joc.6378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Heuven, S. M. A. C., M. Hoppema, E. M. Jones, and H. J. W. de Baar, 2014: Rapid invasion of anthropogenic CO2 into the deep circulation of the Weddell Gyre. Philos. Trans. Roy. Soc., A372, 20130056, https://doi.org/10.1098/rsta.2013.0056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vernet, M., and Coauthors, 2019: The Weddell Gyre, Southern Ocean: Present knowledge and future challenges. Rev. Geophys., 57, 623708, https://doi.org/10.1029/2018RG000604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Schuckmann, K., and Coauthors, 2016: An imperative to monitor Earth’s energy imbalance. Nat. Climate Change, 6, 138144, https://doi.org/10.1038/nclimate2876.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitworth, T., III, and W. D. Nowlin Jr., 1987: Water masses and currents of the Southern Ocean at the Greenwich meridian. J. Geophys. Res., 92, 64626476, https://doi.org/10.1029/JC092iC06p06462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wild, M., 2017: Progress and challenges in the estimation of the global energy balance. AIP Conf. Proc., 1810, 020004, https://doi.org/10.1063/1.4975500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zanna, L., S. Khatiwala, J. M. Gregory, J. Ison, and P. Heimbach, 2019: Global reconstruction of historical ocean heat storage and transport. Proc. Natl. Acad. Sci. USA, 116, 11261131, https://doi.org/10.1073/pnas.1808838115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zenk, W., 2019: Abyssal currents. Encyclopedia of Ocean Sciences, 3rd ed. J. K. Cochran, H. J. Bokuniewicz, and P. L. Yager, Eds., Elsevier, 189–203, https://doi.org/10.1016/b978-0-12-409548-9.11343-0.

    • Crossref
    • Export Citation
  • Zhang, H.-M., and Coauthors, 2019: Updated temperature data give a sharper view of climate trends. Eos, Trans. Amer. Geophys. Union, 100, https://doi.org/10.1029/2019EO128229.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 170 170 43
Full Text Views 16 16 9
PDF Downloads 29 29 14

Multidecadal Warming and Density Loss in the Deep Weddell Sea, Antarctica

View More View Less
  • 1 Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
© Get Permissions
Restricted access

Abstract

The World Ocean is estimated to store more than 90% of the excess energy resulting from man-made greenhouse gas–driven radiative forcing as heat. Uncertainties of this estimate are related to undersampling of the subpolar and polar regions and of the depths below 2000 m. Here we present measurements from the Weddell Sea that cover the whole water column down to the sea floor, taken by the same accurate method at locations revisited every few years since 1989. Our results show widespread warming with similar long-term temperature trends below 700-m depth at all sampling sites. The mean heating rate below 2000 m exceeds that of the global ocean by a factor of about 5. Salinity tends to increase—in contrast to other Southern Ocean regions—at most sites and depths below 700 m, but nowhere strongly enough to fully compensate for the warming effect on seawater density, which hence shows a general decrease. In the top 700 m neither temperature nor salinity shows clear trends. A closer look at the vertical distribution of changes along an approximately zonal and a meridional section across the Weddell Gyre reveals that the strongest vertically coherent warming is observed at the flanks of the gyre over the deep continental slopes and at its northern edge where the gyre connects to the Antarctic Circumpolar Current (ACC). Most likely, the warming of the interior Weddell Sea is driven by changes of the Weddell Gyre strength and its interaction with the ACC.

Denotes content that is immediately available upon publication as open access.

This article is licensed under a Creative Commons Attribution 4.0 license (http://creativecommons.org/licenses/by/4.0/).

© 2020 American Meteorological Society.

Corresponding author: Volker H. Strass, volker.strass@awi.de

Abstract

The World Ocean is estimated to store more than 90% of the excess energy resulting from man-made greenhouse gas–driven radiative forcing as heat. Uncertainties of this estimate are related to undersampling of the subpolar and polar regions and of the depths below 2000 m. Here we present measurements from the Weddell Sea that cover the whole water column down to the sea floor, taken by the same accurate method at locations revisited every few years since 1989. Our results show widespread warming with similar long-term temperature trends below 700-m depth at all sampling sites. The mean heating rate below 2000 m exceeds that of the global ocean by a factor of about 5. Salinity tends to increase—in contrast to other Southern Ocean regions—at most sites and depths below 700 m, but nowhere strongly enough to fully compensate for the warming effect on seawater density, which hence shows a general decrease. In the top 700 m neither temperature nor salinity shows clear trends. A closer look at the vertical distribution of changes along an approximately zonal and a meridional section across the Weddell Gyre reveals that the strongest vertically coherent warming is observed at the flanks of the gyre over the deep continental slopes and at its northern edge where the gyre connects to the Antarctic Circumpolar Current (ACC). Most likely, the warming of the interior Weddell Sea is driven by changes of the Weddell Gyre strength and its interaction with the ACC.

Denotes content that is immediately available upon publication as open access.

This article is licensed under a Creative Commons Attribution 4.0 license (http://creativecommons.org/licenses/by/4.0/).

© 2020 American Meteorological Society.

Corresponding author: Volker H. Strass, volker.strass@awi.de
Save