• Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Allan, R., and T. Ansell, 2006: A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J. Climate, 19, 58165842, https://doi.org/10.1175/JCLI3937.1.

    • Search Google Scholar
    • Export Citation
  • Barnett, T., and Coauthors, 1994: Forecasting global ENSO-related climate anomalies. Tellus, 46A, 381397, https://doi.org/10.3402/tellusa.v46i4.15487.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., M. Chelliah, and S. B. Goldenberg, 1997: Documentation of a highly ENSO–related SST region in the equatorial Pacific: Research note. Atmos.–Ocean, 35, 367383, https://doi.org/10.1080/07055900.1997.9649597.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., A. Kumar, L. Goddard, and M. P. Hoerling, 2005: Improving seasonal prediction practices through attribution of climate variability. Bull. Amer. Meteor. Soc., 86, 5972, https://doi.org/10.1175/BAMS-86-1-59.

    • Search Google Scholar
    • Export Citation
  • Bates, G. T., M. P. Hoerling, and A. Kumar, 2001: Central U.S. springtime precipitation extremes: Teleconnections and relationships with sea surface temperature. J. Climate, 14, 37513766, https://doi.org/10.1175/1520-0442(2001)014<3751:CUSSPE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bellenger, H., E. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard, 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 19992018, https://doi.org/10.1007/s00382-013-1783-z.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1966: A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus, 18, 820829, https://doi.org/10.3402/tellusa.v18i4.9712.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bladé, I., M. Newman, M. A. Alexander, and J. D. Scott, 2008: The late fall extratropical response to ENSO: Sensitivity to coupling and convection in the tropical west Pacific. J. Climate, 21, 61016118, https://doi.org/10.1175/2008JCLI1612.1.

    • Search Google Scholar
    • Export Citation
  • Bogenschutz, P. A., A. Gettelman, C. Hannay, V. E. Larson, R. B. Neale, C. Craig, and C.-C. Chen, 2018: The path to CAM6: Coupled simulations with CAM5.4 and CAM5.5. Geosci. Model Dev., 11, 235255, https://doi.org/10.5194/gmd-11-235-2018.

    • Search Google Scholar
    • Export Citation
  • Chakraborty, A., and T. N. Krishnamurti, 2006: Improved seasonal climate forecasts of the South Asian summer monsoon using a suite of 13 coupled ocean–atmosphere models. Mon. Wea. Rev., 134, 16971721, https://doi.org/10.1175/MWR3144.1.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137 (654), 128, https://doi.org/10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and Coauthors, 2020: The Community Earth System Model version 2 (CESM2). J. Adv. Model Earth Syst., 12, e2019MS001916, https://doi.org/10.1029/2019MS001916.

    • Search Google Scholar
    • Export Citation
  • Deser, C., I. R. Simpson, K. A. McKinnon, and A. S. Phillips, 2017: The Northern Hemisphere extratropical atmospheric circulation response to ENSO: How well do we know it and how do we evaluate models accordingly? J. Climate, 30, 50595082, https://doi.org/10.1175/JCLI-D-16-0844.1.

    • Search Google Scholar
    • Export Citation
  • Deser, C., I. R. Simpson, A. S. Phillips, and K. A. McKinnon, 2018: How well do we know ENSO’s climate impacts over North America, and how do we evaluate models accordingly? J. Climate, 31, 49915014, https://doi.org/10.1175/JCLI-D-17-0783.1.

    • Search Google Scholar
    • Export Citation
  • Favre, A., and A. Gershunov, 2009: North Pacific cyclonic and anticyclonic transients in a global warming context: Possible consequences for western North American daily precipitation and temperature extremes. Climate Dyn., 32, 969987, https://doi.org/10.1007/s00382-008-0417-3.

    • Search Google Scholar
    • Export Citation
  • Frauen, C., D. Dommenget, N. Tyrrell, M. Rezny, and S. Wales, 2014: Analysis of the nonlinearity of El Niño–Southern Oscillation teleconnections. J. Climate, 27, 62256244, https://doi.org/10.1175/JCLI-D-13-00757.1.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., I. Weinberger, I. P. White, L. D. Oman, V. Aquila, and Y.-K. Lim, 2019: The salience of nonlinearities in the boreal winter response to ENSO: North Pacific and North America. Climate Dyn., 52, 44294446, https://doi.org/10.1007/s00382-018-4386-x.

    • Search Google Scholar
    • Export Citation
  • Gershunov, A., and T. P. Barnett, 1998: ENSO influence on intraseasonal extreme rainfall and temperature frequencies in the contiguous United States: Observations and model results. J. Climate, 11, 15751586, https://doi.org/10.1175/1520-0442(1998)011<1575:EIOIER>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and Coauthors, 2019: The Whole Atmosphere Community Climate Model version 6 (WACCM6). J. Geophys. Res. Atmos., 124, 12 38012 403, https://doi.org/10.1029/2019JD030943.

    • Search Google Scholar
    • Export Citation
  • Gleixner, S., N. S. Keenlyside, T. D. Demissie, F. Counillon, Y. Wang, and E. Viste, 2017: Seasonal predictability of Kiremt rainfall in coupled general circulation models. Environ. Res. Lett., 12, 114016, https://doi.org/10.1088/1748-9326/aa8cfa.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and I.-S. Kang, 1987: Barotropic models of the extratropical response to El Niño. J. Atmos. Sci., 44, 35763586, https://doi.org/10.1175/1520-0469(1987)044<3576:BMOTER>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. Ting, 1990: Orographic versus thermal forcing of stationary waves: The importance of the mean low-level wind. J. Atmos. Sci., 47, 495500, https://doi.org/10.1175/1520-0469(1990)047<0495:OVTFOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., S. W. Lyons, and S. Nigam, 1989: Transients and the extratropical response to El Niño. J. Atmos. Sci., 46, 163174, https://doi.org/10.1175/1520-0469(1989)046<0163:TATERT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., M. Ting, and H. Wang, 2002: Northern winter stationary waves: Theory and modeling. J. Climate, 15, 21252144, https://doi.org/10.1175/1520-0442(2002)015<2125:NWSWTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., C. Peubey, A. Simmons, P. Berrisford, P. Poli, and D. Dee, 2015: ERA-20CM: A twentieth-century atmospheric model ensemble. Quart. J. Roy. Meteor. Soc., 141, 23502375, https://doi.org/10.1002/qj.2528.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the southern oscillation. Mon. Wea. Rev., 109, 813829, https://doi.org/10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., I. N. James, and G. H. White, 1983: The shape, propagation and mean-flow interaction of large-scale weather systems. J. Atmos. Sci., 40, 15951612, https://doi.org/10.1175/1520-0469(1983)040<1595:TSPAMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2015: Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911930, https://doi.org/10.1175/JCLI-D-14-00006.1.

    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Search Google Scholar
    • Export Citation
  • Hurwitz, M. M., N. Calvo, C. I. Garfinkel, A. H. Butler, S. Ineson, C. Cagnazzo, E. Manzini, and C. Peña-Ortiz, 2014: Extra-tropical atmospheric response to ENSO in the CMIP5 models. Climate Dyn., 43, 33673376, https://doi.org/10.1007/s00382-014-2110-z.

    • Search Google Scholar
    • Export Citation
  • Jiménez-Esteve, B., and D. I. V. Domeisen, 2019: Nonlinearity in the North Pacific atmospheric response to a linear ENSO forcing. Geophys. Res. Lett., 46, 22712281, https://doi.org/10.1029/2018gl081226.

    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., D. C. Collins, S. B. Feldstein, M. L. L’Heureux, and E. E. Riddle, 2014: Skillful wintertime North American temperature forecasts out to 4 weeks based on the state of ENSO and the MJO. Wea. Forecasting, 29 2338, https://doi.org/10.1175/WAF-D-13-00102.1.

    • Search Google Scholar
    • Export Citation
  • Jong, B.-T., M. Ting, and R. Seager, 2016: El Niño’s impact on California precipitation: Seasonality, regionality, and El Niño intensity. Environ. Res. Lett., 11, 054021, https://doi.org/10.1088/1748-9326/11/5/054021.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., and P. R. Gent, 2004: The Community Climate System Model, version 2. J. Climate, 17, 36663682, https://doi.org/10.1175/1520-0442(2004)017<3666:TCCSMV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., Y. Zhou, and M. A. Alexander, 2019: Changes in atmospheric rivers and moisture transport over the northeast Pacific and western North America in response to ENSO diversity. Climate Dyn., 52, 73757388, https://doi.org/10.1007/s00382-017-3598-9.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403407, https://doi.org/10.1038/nature12534.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., 2010: On the assessment of the value of the seasonal forecast information. Meteor. Appl., 17, 385392, https://doi.org/10.1002/met.167.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., and M. P. Hoerling, 1998: Annual cycle of Pacific–North American seasonal predictability associated with different phases of ENSO. J. Climate, 11, 32953308, https://doi.org/10.1175/1520-0442(1998)011<3295:ACOPNA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., and M. P. Hoerling, 2000: Analysis of a conceptual model of seasonal climate variability and implications for seasonal prediction. Bull. Amer. Meteor. Soc., 81, 255264, https://doi.org/10.1175/1520-0477(2000)081<0255:AOACMO>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., A. G. Barnston, and M. P. Hoerling, 2001: Seasonal predictions, probabilistic verifications, and ensemble size. J. Climate, 14, 16711676, https://doi.org/10.1175/1520-0442(2001)014<1671:SPPVAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. J. Nath, 1994: A modeling study of the relative roles of tropical and extratropical SST anomalies in the variability of the global atmosphere-ocean system. J. Climate, 7, 11841207, https://doi.org/10.1175/1520-0442(1994)007<1184:AMSOTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., B. E. Mapes, C. Wang, D. B. Enfield, and S. J. Weaver, 2014: Springtime ENSO phase evolution and its relation to rainfall in the continental U.S. Geophys. Res. Lett., 41, 16731680, https://doi.org/10.1002/2013GL059137.

    • Search Google Scholar
    • Export Citation
  • Lemos, M. C., and L. Dilling, 2007: Equity in forecasting climate: Can science save the world’s poor? Sci. Public Policy, 34, 109116, https://doi.org/10.3152/030234207X190964.

    • Search Google Scholar
    • Export Citation
  • Li, G., and S.-P. Xie, 2014: Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ problems. J. Climate, 27, 17651780, https://doi.org/10.1175/JCLI-D-13-00337.1.

    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., M. Masutani, and M. Ji, 1996: SST-forced seasonal simulation and prediction skill for versions of the NCEP/MRF model. Bull. Amer. Meteor. Soc., 77, 507518, https://doi.org/10.1175/1520-0477(1996)077<0507:SFSSAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meinke, H., and R. C. Stone, 2005: Seasonal and inter-annual climate forecasting: The new tool for increasing preparedness to climate variability and change in agricultural planning and operations. Climatic Change, 70, 221253, https://doi.org/10.1007/s10584-005-5948-6.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and R. W. Higgins, 1998: Tropical influences on California precipitation. J. Climate, 11, 412430, https://doi.org/10.1175/1520-0442(1998)011<0412:TIOCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and J. E. Schemm, 2008: Relationships between ENSO and drought over the southeastern United States. Geophys. Res. Lett., 35, L15701, https://doi.org/10.1029/2008GL034656.

    • Search Google Scholar
    • Export Citation
  • Namias, J., 1976: Some statistical and synoptic characteristics associated with El Niño. J. Phys. Oceanogr., 6, 130138, https://doi.org/10.1175/1520-0485(1976)006<0130:SSASCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., and C. Deser, 2010: Asymmetry in the duration of El Niño and La Niña. J. Climate, 23, 58265843, https://doi.org/10.1175/2010JCLI3592.1.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., and D. L. T. Anderson, 1994: The prospects for seasonal forecasting—A review paper. Quart. J. Roy. Meteor. Soc., 120, 755793, https://doi.org/10.1002/qj.49712051802.

    • Search Google Scholar
    • Export Citation
  • Papineau, J. M., 2001: Wintertime temperature anomalies in Alaska correlated with ENSO and PDO. Int. J. Climatol., 21, 15771592, https://doi.org/10.1002/joc.686.

    • Search Google Scholar
    • Export Citation
  • Peng, P., A. Kumar, and W. Wang, 2011: An analysis of seasonal predictability in coupled model forecasts. Climate Dyn., 36, 637648, https://doi.org/10.1007/s00382-009-0711-8.

    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, https://doi.org/10.1175/JCLI-D-15-0556.1.

    • Search Google Scholar
    • Export Citation
  • Rohde, R., and Coauthors, 2013: A new estimate of the average Earth surface land temperature spanning 1753 to 2011. Geoinfor. Geostat. Overview, 1 (1), https://doi.org/10.4172/2327-4581.1000101.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1986: North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon. Wea. Rev., 114, 23522362, https://doi.org/10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., 1998: Assessing potential seasonal predictability with an ensemble of multidecadal GCM simulations. J. Climate, 11, 109120, https://doi.org/10.1175/1520-0442(1998)011<0109:APSPWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schmidt, N., E. K. Lipp, J. B. Rose, and M. E. Luther, 2001: ENSO influences on seasonal rainfall and river discharge in Florida. J. Climate, 14, 615628, https://doi.org/10.1175/1520-0442(2001)014<0615:EIOSRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, M. Ziese, and B. Rudolf, 2014: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol., 115, 1540, https://doi.org/10.1007/s00704-013-0860-x.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., Y. Chang, M. J. Suarez, and P. J. Pegion, 2008: ENSO and wintertime extreme precipitation events over the contiguous United States. J. Climate, 21, 2239, https://doi.org/10.1175/2007JCLI1705.1.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., 1981: Dynamical predictability of monthly means. J. Atmos. Sci., 38, 25472572, https://doi.org/10.1175/1520-0469(1981)038<2547:DPOMM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., J. M. Wallace, and G. W. Branstator, 1983: Barotropic wave propagation and instability, and atmospheric teleconnection patterns. J. Atmos. Sci., 40, 13631392, https://doi.org/10.1175/1520-0469(1983)040<1363:BWPAIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, https://doi.org/10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Spencer, H., and J. M. Slingo, 2003: The simulation of peak and delayed ENSO teleconnections. J. Climate, 16, 17571774, https://doi.org/10.1175/1520-0442(2003)016<1757:TSOPAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stockdale, T. N., D. L. T. Anderson, J. O. S. Alves, and M. A. Balmaseda, 1998: Global seasonal rainfall forecasts using a coupled ocean–atmosphere model. Nature, 392, 370373, https://doi.org/10.1038/32861.

    • Search Google Scholar
    • Export Citation
  • Stoner, A. M. K., K. Hayhoe, and D. J. Wuebbles, 2009: Assessing general circulation model simulations of atmospheric teleconnection patterns. J. Climate, 22, 43484372, https://doi.org/10.1175/2009JCLI2577.1.

    • Search Google Scholar
    • Export Citation
  • Ting, M., and P. D. Sardeshmukh, 1993: Factors determining the extratropical response to equatorial diabatic heating anomalies. J. Atmos. Sci., 50, 907918, https://doi.org/10.1175/1520-0469(1993)050<0907:FDTERT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Titchner, H. A., and N. A. Rayner, 2014: The Met Office Hadley Centre sea ice and sea surface temperature data set, version 2: 1. Sea ice concentrations. J. Geophys. Res. Atmos., 119, 28642889, https://doi.org/10.1002/2013JD020316.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. W. Hurrell, 1994: Decadal atmosphere–ocean variations in the Pacific. Climate Dyn., 9, 303319, https://doi.org/10.1007/BF00204745.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, https://doi.org/10.1029/97JC01444.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 1981: Mechanisms determining the atmospheric response to sea surface temperature anomalies. J. Atmos. Sci., 38, 554571, https://doi.org/10.1175/1520-0469(1981)038<0554:MDTART>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wolter, K., R. M. Dole, and C. A. Smith, 1999: Short-term climate extremes over the continental United States and ENSO. Part I: Seasonal temperatures. J. Climate, 12, 32553272, https://doi.org/10.1175/1520-0442(1999)012<3255:STCEOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, X., and T. DelSole, 2012: Systematic comparison of ENSO teleconnection patterns between models and observations. J. Climate, 25, 425446, https://doi.org/10.1175/JCLI-D-11-00175.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., J. Perlwitz, and M. P. Hoerling, 2014: What is responsible for the strong observed asymmetry in teleconnections between El Niño and La Niña? Geophys. Res. Lett., 41, 10191025, https://doi.org/10.1002/2013GL058964.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 6 6 6
Full Text Views 0 0 0
PDF Downloads 0 0 0

Model Biases in the Simulation of the Springtime North Pacific ENSO Teleconnection

View More View Less
  • 1 Ministry of Education Key Laboratory for Earth System Modeling, and Department of Earth System Science, Tsinghua University, Beijing, China
  • 2 National Center for Atmospheric Research, Boulder, Colorado
  • 3 State Key Laboratory of Numerical Modeling for Atmospheric Sciences annind Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • 4 College of Ocean Science, University of Chinese Academy of Sciences, Beijing, China
© Get Permissions
Restricted access

Abstract

The wintertime ENSO teleconnection over the North Pacific region consists of an intensified (weakened) low pressure center during El Niño (La Niña) events both in observations and in climate models. Here, it is demonstrated that this teleconnection persists too strongly into late winter and spring in the Community Earth System Model (CESM). This discrepancy arises in both fully coupled and atmosphere-only configurations, when observed SSTs are specified, and is shown to be robust when accounting for the sampling uncertainty due to internal variability. Furthermore, a similar problem is found in many other models from piControl simulations of the Coupled Model Intercomparison Project (23 out of 43 in phase 5 and 11 out of 20 in phase 6). The implications of this bias for the simulation of surface climate anomalies over North America are assessed. The overall effect on the ENSO composite field (El Niño minus La Niña) resembles an overly prolonged influence of ENSO into the spring with anomalously high temperatures over Alaska and western Canada, and wet (dry) biases over California (southwest Canada). Further studies are still needed to disentangle the relative roles played by diabatic heating, background flow, and other possible contributions in determining the overly strong springtime ENSO teleconnection intensity over the North Pacific.

Corresponding author: Ruyan Chen, cry15@mails.tsinghua.edu.cn

Abstract

The wintertime ENSO teleconnection over the North Pacific region consists of an intensified (weakened) low pressure center during El Niño (La Niña) events both in observations and in climate models. Here, it is demonstrated that this teleconnection persists too strongly into late winter and spring in the Community Earth System Model (CESM). This discrepancy arises in both fully coupled and atmosphere-only configurations, when observed SSTs are specified, and is shown to be robust when accounting for the sampling uncertainty due to internal variability. Furthermore, a similar problem is found in many other models from piControl simulations of the Coupled Model Intercomparison Project (23 out of 43 in phase 5 and 11 out of 20 in phase 6). The implications of this bias for the simulation of surface climate anomalies over North America are assessed. The overall effect on the ENSO composite field (El Niño minus La Niña) resembles an overly prolonged influence of ENSO into the spring with anomalously high temperatures over Alaska and western Canada, and wet (dry) biases over California (southwest Canada). Further studies are still needed to disentangle the relative roles played by diabatic heating, background flow, and other possible contributions in determining the overly strong springtime ENSO teleconnection intensity over the North Pacific.

Corresponding author: Ruyan Chen, cry15@mails.tsinghua.edu.cn
Save