• Beheng, K. D., 1994: A parameterization of warm cloud microphysical conversion processes. Atmos. Res., 33, 193206, https://doi.org/10.1016/0169-8095(94)90020-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., and J. L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, https://doi.org/10.1029/2005GL023851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, R. A., and et al. , 2018: Cloud adiabaticity and its relationship to marine stratocumulus characteristics over the northeast Pacific Ocean. J. Geophys. Res. Atmos., 123, 13 79013 806, https://doi.org/10.1029/2018JD029287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cadeddu, M. P., J. C. Liljegren, and D. D. Turner, 2013: The Atmospheric Radiation Measurement (ARM) program network of microwave radiometers: Instrumentation, data, and retrievals. Atmos. Meas. Tech., 6, 23592372, https://doi.org/10.5194/amt-6-2359-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cadeddu, M. P., R. Marchand, E. Orlandi, D. D. Turner, and M. Mech, 2017: Microwave passive ground-based retrievals of cloud and rain liquid water path in drizzling clouds: Challenges and possibilities. IEEE Trans. Geosci. Remote Sens., 55, 64686481, https://doi.org/10.1109/TGRS.2017.2728699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clothiaux, E. E., T. P. Ackerman, G. G. Mace, K. P. Moran, R. T. Marchand, M. A. Miller, and B. E. Martner, 2000: Objective determination of cloud heights and radar reflectivities using a combination of active remote sensors at the ARM CART sites. J. Appl. Meteor., 39, 645665, https://doi.org/10.1175/1520-0450(2000)039<0645:ODOCHA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dolinar, E. K., X. Dong, B. Xi, J. H. Jiang, and H. Su, 2015: Evaluation of CMIP5 simulated clouds and TOA radiation budgets using NASA satellite observations. Climate Dyn., 44, 22292247, https://doi.org/10.1007/s00382-014-2158-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, X., P. Minnis, T. P. Ackerman, E. E. Clothiaux, G. G. Mace, C. N. Long, and J. C. Liljegren, 2000: A 25-month database of stratus cloud properties generated from ground-based measurements at the Atmospheric Radiation Measurement Southern Great Plains site. J. Geophys. Res., 105, 45294537, https://doi.org/10.1029/1999JD901159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, X., B. Xi, A. Kennedy, P. Minnis, and R. Wood, 2014a: A 19-month record of marine aerosol–cloud–radiation properties derived from DOE ARM mobile facility deployment at the Azores. Part I: Cloud fraction and single-layered MBL cloud properties. J. Climate, 27, 36653682, https://doi.org/10.1175/JCLI-D-13-00553.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, X., B. Xi, P. Wu, X. Dong, B. Xi, and P. Wu, 2014b: Investigation of the diurnal variation of marine boundary layer cloud microphysical properties at the Azores. J. Climate, 27, 88278835, https://doi.org/10.1175/JCLI-D-14-00434.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, X., A. C. Schwantes, B. Xi, and P. Wu, 2015: Investigation of the marine boundary layer cloud and CCN properties under coupled and decoupled conditions over the Azores. J. Geophys. Res. Atmos., 120, 61796191, https://doi.org/10.1002/2014JD022939.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feingold, G., W. R. Cotton, B. Stevens, A. S. Frisch, G. Feingold, W. R. Cotton, B. Stevens, and A. S. Frisch, 1996: The relationship between drop in-cloud residence time and drizzle production in numerically simulated stratocumulus clouds. J. Atmos. Sci., 53, 11081122, https://doi.org/10.1175/1520-0469(1996)053<1108:TRBDIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C. R., C. S. Bretherton, and D. Leon, 2011: Coupled vs. decoupled boundary layers in VOCALS-REx. Atmos. Chem. Phys., 11, 71437153, https://doi.org/10.5194/acp-11-7143-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and Y. Kogan, 2000: A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Wea. Rev., 128, 229243, https://doi.org/10.1175/1520-0493(2000)128<0229:ANCPPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606, https://doi.org/10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kollias, P., and et al. , 2016: Development and applications of ARM millimeter-wavelength cloud radars. The Atmospheric Radiation Measurement (ARM) Program: The First 20 Years, Meteor. Monogr., No. 57, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0037.1.

    • Crossref
    • Export Citation
  • Lebsock, M., H. Morrison, and A. Gettelman, 2013: Microphysical implications of cloud-precipitation covariance derived from satellite remote sensing. J. Geophys. Res. Atmos., 118, 65216533, https://doi.org/10.1002/JGRD.50347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liljegren, J. C., E. E. Clothiaux, G. G. Mace, S. Kato, and X. Dong, 2001: A new retrieval for cloud liquid water path using a ground-based microwave radiometer and measurements of cloud temperature. J. Geophys. Res., 106, 14 48514 500, https://doi.org/10.1029/2000JD900817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., and P. H. Daum, 2004: Parameterization of the autoconversion process. Part I: Analytical formulation of the Kessler-type parameterizations. J. Atmos. Sci., 61, 15391548, https://doi.org/10.1175/1520-0469(2004)061<1539:POTAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., P. H. Daum, R. McGraw, and R. Wood, 2006: Parameterization of the autoconversion process. Part II: Generalization of Sundqvist-type parameterizations. J. Atmos. Sci., 63, 11031109, https://doi.org/10.1175/JAS3675.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., P. H. Daum, R. McGraw, M. A. Miller, and S. Niu, 2007: Theoretical expression for the autoconversion rate of the cloud droplet number concentration. Geophys. Res. Lett., 34, L16821, https://doi.org/10.1029/2007GL030389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, M. A., B. A. Albrecht, M. A. Miller, and B. A. Albrecht, 1995: Surface-based observations of mesoscale cumulus–stratocumulus interaction during ASTEX. J. Atmos. Sci., 52, 28092826, https://doi.org/10.1175/1520-0469(1995)052<2809:SBOOMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morris, V. R., 2016: Ceilometer instrument handbook. Atmospheric Radiation Measurement Rep. ARM SC-ARM-TR-020, 26 pp., https://www.arm.gov/publications/tech_reports/handbooks/ceil_handbook.pdf.

    • Crossref
    • Export Citation
  • Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21, 36423659, https://doi.org/10.1175/2008JCLI2105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nam, C., S. Bony, J. L. Dufresne, and H. Chepfer, 2012: The too few, too bright tropical low-cloud problem in CMIP5 models. Geophys. Res. Lett., 39, L21801, https://doi.org/10.1029/2012GL053421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D. A., J. A. Coakley, D. H. Lenschow, C. W. Fairall, and R. A. Kropfli, 1984: Outlook for research on subtropical marine stratification clouds. Bull. Amer. Meteor. Soc., 65, 12901301, https://doi.org/10.1175/1520-0477(1984)065<1290:OFROSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rémillard, J., P. Kollias, E. Luke, and R. Wood, 2012: Marine boundary layer cloud observations in the Azores. J. Climate, 25, 73817398, https://doi.org/10.1175/JCLI-D-11-00610.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and M. K. Yau, 1996: Short Course in Cloud Physics. Elsevier, 295 pp.

  • Slingo, A., 1990: Sensitivity of the Earth’s radiation budget to changes in low clouds. Nature, 343, 4951, https://doi.org/10.1038/343049a0.

  • Stevens, B., W. R. Cotton, G. Feingold, C.-H. Moeng, B. Stevens, W. R. Cotton, G. Feingold, and C.-H. Moeng, 1998: Large-eddy simulations of strongly precipitating, shallow, stratocumulus-topped boundary layers. J. Atmos. Sci., 55, 36163638, https://doi.org/10.1175/1520-0469(1998)055<3616:LESOSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tripoli, G. J., W. R. Cotton, G. J. Tripoli, and W. R. Cotton, 1980: A numerical investigation of several factors contributing to the observed variable intensity of deep convection over south Florida. J. Appl. Meteor., 19, 10371063, https://doi.org/10.1175/1520-0450(1980)019<1037:ANIOSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., S. A. Clough, J. C. Liljegren, E. E. Clothiaux, K. E. Cady-Pereira, and K. L. Gaustad, 2007: Retrieving liquid water path and precipitable water vapor from the Atmospheric Radiation Measurement (ARM) microwave radiometers. IEEE Trans. Geosci. Remote Sens., 45, 36803690, https://doi.org/10.1109/TGRS.2007.903703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vial, J., J. L. Dufresne, and S. Bony, 2013: On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates. Climate Dyn., 41, 33393362, https://doi.org/10.1007/s00382-013-1725-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and P. V. Hobbs, 2006: Atmospheric Science: An Introductory Survey. 2nd ed. Elsevier, 488 pp.

  • Wang, M., H. Song, V. E. Larson, X. Dong, Z. Zhang, J. Wang, and P.-L. Ma, 2019: Subgrid variations of the cloud water and droplet number concentration over the tropical ocean: Satellite observations and implications for warm rain simulations in climate models. Atmos. Chem. Phys., 19, 10771096, https://doi.org/10.5194/acp-19-1077-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., 2005: Drizzle in stratiform boundary layer clouds. Part I: Vertical and horizontal structure. J. Atmos. Sci., 62, 30113033, https://doi.org/10.1175/JAS3529.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 23732423, https://doi.org/10.1175/MWR-D-11-00121.1.

  • Wood, R., T. L. Kubar, and D. L. Hartmann, 2009: Understanding the importance of microphysics and macrophysics for warm rain in marine low clouds. Part II: Heuristic models of rain formation. J. Atmos. Sci., 66, 29732990, https://doi.org/10.1175/2009JAS3072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., and et al. , 2015: Clouds, aerosols, and precipitation in the marine boundary layer: An ARM mobile facility deployment. Bull. Amer. Meteor. Soc., 96, 419440, https://doi.org/10.1175/BAMS-D-13-00180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, P., X. Dong, and B. Xi, 2015: Marine boundary layer drizzle properties and their impact on cloud property retrieval. Atmos. Meas. Tech., 8, 35553562, https://doi.org/10.5194/amt-8-3555-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, P., X. Dong, B. Xi, Y. Liu, M. Thieman, and P. Minnis, 2017: Effects of environment forcing on marine boundary layer cloud-drizzle processes. J. Geophys. Res. Atmos., 122, 44634478, https://doi.org/10.1002/2016JD026326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, P., B. Xi, X. Dong, and Z. Zhang, 2018: Evaluation of autoconversion and accretion enhancement factors in general circulation model warm-rain parameterizations using ground-based measurements over the Azores. Atmos. Chem. Phys., 18, 17 40517 420, https://doi.org/10.5194/acp-18-17405-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, P., X. Dong, B. Xi, J. Tian, and D. M. Ward, 2020: Profiles of MBL cloud and drizzle microphysical properties retrieved from ground-based observations and validated by aircraft in situ measurements over the Azores. J. Geophys. Res. Atmos., 125, e2019JD032205, https://doi.org/10.1029/2019JD032205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, X., and M. Zhang, 2015: Scale-aware parameterization of liquid cloud inhomogeneity and its impact on simulated climate in CESM. J. Geophys. Res. Atmos., 120, 83598371, https://doi.org/10.1002/2015JD023565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamaguchi, T., G. Feingold, and J. Kazil, 2017: Stratocumulus to cumulus transition by drizzle. J. Adv. Model. Earth Syst., 9, 23332349, https://doi.org/10.1002/2017MS001104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, F., E. P. Luke, P. Kollias, A. B. Kostinski, and A. M. Vogelmann, 2018: Scaling of drizzle virga depth with cloud thickness for marine stratocumulus clouds. Geophys. Res. Lett., 45, 37463753, https://doi.org/10.1029/2018GL077145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yum, S. S., J. Wang, Y. Liu, G. Senum, S. Springston, R. McGraw, and J. M. Yeom, 2015: Cloud microphysical relationships and their implication on entrainment and mixing mechanism for the stratocumulus clouds measured during the VOCALS project. J. Geophys. Res. Atmos., 120, 50475069, https://doi.org/10.1002/2014JD022802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., T. A. Myers, D. T. McCoy, S. Po-Chedley, P. M. Caldwell, P. Ceppi, S. A. Klein, and K. E. Taylor, 2020: Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett., 47, e2019GL085782, https://doi.org/10.1029/2019GL085782.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., H. Song, P. L. Ma, V. E. Larson, M. Wang, X. Dong, and J. Wang, 2019: Subgrid variations of the cloud water and droplet number concentration over the tropical ocean: Satellite observations and implications for warm rain simulations in climate models. Atmos. Chem. Phys., 19, 10771096, https://doi.org/10.5194/acp-19-1077-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 203 203 28
Full Text Views 107 107 11
PDF Downloads 127 127 11

A Climatology of Marine Boundary Layer Cloud and Drizzle Properties Derived from Ground-Based Observations over the Azores

View More View Less
  • 1 Department of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, Arizona
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

In this study, more than 4 years of ground-based observations and retrievals were collected and analyzed to investigate the seasonal and diurnal variations of single-layered MBL (with three subsets: nondrizzling, virga, and rain) cloud and drizzle properties, as well as their vertical and horizontal variations. The annual mean drizzle frequency was ~55%, with ~70% in winter and ~45% in summer. The cloud-top (cloud-base) height for rain clouds was the highest (lowest), resulting in the deepest cloud layer, i.e., 0.8 km, which is 4 (2) times that of nondrizzling (virga) clouds. The retrieved cloud-droplet effective radii rc were the largest (smallest) for rain (nondrizzling) clouds, and the nighttime values were greater than the daytime values. Drizzle number concentration Nd and liquid water content LWCd were three orders and one order lower, respectively, than their cloud counterparts. The rc and LWCc increased from the cloud base to zi ≈ 0.75 by condensational growth, while drizzle median radii rd increased from the cloud top downward the cloud base by collision–coalescence. The adiabaticity values monotonically increased from the cloud top to the cloud base with maxima of ~0.7 (0.3) for nondrizzling (rain) clouds. The drizzling process decreases the adiabaticity by 0.25 to 0.4, and the cloud-top entrainment mixing impacts as deep as upper 40% of the cloud layers. Cloud and drizzle homogeneities decreased with increased horizontal sampling lengths. Cloud homogeneity increases with increasing cloud fraction. These results can serve as baselines for studying MBL cloud-to-rain conversion and growth processes over the Azores.

Current affiliation: Pacific Northwest National Laboratory, Richland, Washington.

Corresponding author: Dr. Xiquan Dong, xdong@email.arizona.edu

Abstract

In this study, more than 4 years of ground-based observations and retrievals were collected and analyzed to investigate the seasonal and diurnal variations of single-layered MBL (with three subsets: nondrizzling, virga, and rain) cloud and drizzle properties, as well as their vertical and horizontal variations. The annual mean drizzle frequency was ~55%, with ~70% in winter and ~45% in summer. The cloud-top (cloud-base) height for rain clouds was the highest (lowest), resulting in the deepest cloud layer, i.e., 0.8 km, which is 4 (2) times that of nondrizzling (virga) clouds. The retrieved cloud-droplet effective radii rc were the largest (smallest) for rain (nondrizzling) clouds, and the nighttime values were greater than the daytime values. Drizzle number concentration Nd and liquid water content LWCd were three orders and one order lower, respectively, than their cloud counterparts. The rc and LWCc increased from the cloud base to zi ≈ 0.75 by condensational growth, while drizzle median radii rd increased from the cloud top downward the cloud base by collision–coalescence. The adiabaticity values monotonically increased from the cloud top to the cloud base with maxima of ~0.7 (0.3) for nondrizzling (rain) clouds. The drizzling process decreases the adiabaticity by 0.25 to 0.4, and the cloud-top entrainment mixing impacts as deep as upper 40% of the cloud layers. Cloud and drizzle homogeneities decreased with increased horizontal sampling lengths. Cloud homogeneity increases with increasing cloud fraction. These results can serve as baselines for studying MBL cloud-to-rain conversion and growth processes over the Azores.

Current affiliation: Pacific Northwest National Laboratory, Richland, Washington.

Corresponding author: Dr. Xiquan Dong, xdong@email.arizona.edu
Save