• Abraham, J. P., and Coauthors, 2013: A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change. Rev. Geophys., 51, 450483, https://doi.org/10.1002/rog.20022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AchutaRao, K. M., and Coauthors, 2007: Simulated and observed variability in ocean temperature and heat content. Proc. Natl. Acad. Sci. USA, 104, 10 76810 773, https://doi.org/10.1073/pnas.0611375104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and Coauthors, 2006: Quantifying anthropogenic influence on recent near-surface temperature change. Surv. Geophys., 27, 491544, https://doi.org/10.1007/s10712-006-9011-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Annan, J., and J. Hargreaves, 2010: Reliability of the CMIP3 ensemble. Geophys. Res. Lett., 37, L02703, https://doi.org/10.1029/2009GL041994.

  • Barnett, T. P., D. W. Pierce, and R. Schnur, 2001: Detection of anthropogenic climate change in the world’s oceans. Science, 292, 270274, https://doi.org/10.1126/science.1058304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., D. W. Pierce, K. M. AchutaRao, P. J. Gleckler, B. D. Santer, J. M. Gregory, and W. M. Washington, 2005: Penetration of human-induced warming into the world’s oceans. Science, 309, 284287, https://doi.org/10.1126/science.1112418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bilbao, R. A. F., J. M. Gregory, N. Bouttes, M. D. Palmer, and P. Stott, 2019: Attribution of ocean temperature change to anthropogenic and natural forcings using the temporal, vertical and geographical structure. Climate Dyn., 53, 53895413, https://doi.org/10.1007/s00382-019-04910-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bindoff, N., and Coauthors, 2013: Detection and attribution of climate change: From global to regional. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 867–952.

  • Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 571–657.

  • Boyer, T., and Coauthors, 2016: Sensitivity of global upper-ocean heat content estimates to mapping methods, XBT bias corrections, and baseline climatologies. J. Climate, 29, 48174842, https://doi.org/10.1175/JCLI-D-15-0801.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., 1973: New polynomials for thermal expansion, adiabatic temperature gradient and potential temperature of sea water. Deep-Sea Res. Oceanogr. Abst., 20, 401408, https://doi.org/10.1016/0011-7471(73)90063-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • Domingues, C. M., J. A. Church, N. J. White, P. J. Gleckler, S. E. Wijffels, P. M. Barker, and J. R. Dunn, 2008: Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature, 453, 10901093, https://doi.org/10.1038/nature07080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durack, P. J., P. J. Gleckler, F. W. Landerer, and K. E. Taylor, 2014: Quantifying underestimates of long-term upper-ocean warming. Nat. Climate Change, 4, 9991005, https://doi.org/10.1038/nclimate2389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gleckler, P. J., and Coauthors, 2012: Human-induced global ocean warming on multidecadal timescales. Nat. Climate Change, 2, 524529, https://doi.org/10.1038/nclimate1553.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gleckler, P. J., P. J. Durack, R. J. Stouffer, G. C. Johnson, and C. E. Forest, 2016: Industrial-era global ocean heat uptake doubles in recent decades. Nat. Climate Change, 6, 394398, https://doi.org/10.1038/nclimate2915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., H. T. Banks, P. A. Stott, J. A. Lowe, and M. D. Palmer, 2004: Simulated and observed decadal variability in ocean heat content. Geophys. Res. Lett., 31, L15312, https://doi.org/10.1029/2004GL020258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegerl, G., and F. Zwiers, 2011: Use of models in detection and attribution of climate change. Wiley Interdiscip. Rev.: Climate Change, 2, 570591, https://doi.org/10.1002/WCC.121.

    • Search Google Scholar
    • Export Citation
  • Irving, D. B., S. Wijffels, and J. A. Church, 2019: Anthropogenic aerosols, greenhouse gases, and the uptake, transport, and storage of excess heat in the climate system. Geophys. Res. Lett., 46, 48944903, https://doi.org/10.1029/2019GL082015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ishii, M., Y. Fukuda, S. Hirahara, S. Yasui, T. Suzuki, and K. Sato, 2017: Accuracy of global upper ocean heat content estimation expected from present observational data sets. SOLA, 13, 163167, https://doi.org/10.2151/SOLA.2017-030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levitus, S., and Coauthors, 2012: World Ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett., 39, L10603, https://doi.org/10.1029/2012GL051106.

    • Search Google Scholar
    • Export Citation
  • Marcos, M., and A. Amores, 2014: Quantifying anthropogenic and natural contributions to thermosteric sea level rise. Geophys. Res. Lett., 41, 25022507, https://doi.org/10.1002/2014GL059766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melet, A., and B. Meyssignac, 2015: Explaining the spread in global mean thermosteric sea level rise in CMIP5 climate models. J. Climate, 28, 99189940, https://doi.org/10.1175/JCLI-D-15-0200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., T. P. Barnett, K. M. AchutaRao, P. J. Gleckler, J. M. Gregory, and W. M. Washington, 2006: Anthropogenic warming of the oceans: Observations and model results. J. Climate, 19, 18731900, https://doi.org/10.1175/JCLI3723.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., P. J. Gleckler, T. P. Barnett, B. D. Santer, and P. J. Durack, 2012: The fingerprint of human-induced changes in the ocean’s salinity and temperature fields. Geophys. Res. Lett., 39, L21704, https://doi.org/10.1029/2012GL053389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhein, M., and Coauthors, 2013: Observations: Ocean. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 255–315.

  • Ribes, A., F. W. Zwiers, J.-M. Azaïs, and P. Naveau, 2017: A new statistical approach to climate change detection and attribution. Climate Dyn., 48, 367386, https://doi.org/10.1007/s00382-016-3079-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen Gupta, A., N. C. Jourdain, J. N. Brown, and D. Monselesan, 2013: Climate drift in the CMIP5 models. J. Climate, 26, 85978615, https://doi.org/10.1175/JCLI-D-12-00521.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slangen, A., J. A. Church, X. Zhang, and D. Monselesan, 2014: Detection and attribution of global mean thermosteric sea level change. Geophys. Res. Lett., 41, 59515959, https://doi.org/10.1002/2014GL061356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slangen, A., J. A. Church, X. Zhang, and D. Monselesan, 2015: The sea level response to external forcings in historical simulations of CMIP5 climate models. J. Climate, 28, 85218539, https://doi.org/10.1175/JCLI-D-15-0376.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokarska, K. B., G. C. Hegerl, A. P. Schurer, A. Ribes, and J. T. Fasullo, 2019: Quantifying human contributions to past and future ocean warming and thermosteric sea level rise. Environ. Res. Lett., 14, 074020, https://doi.org/10.1088/1748-9326/ab23c1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Schuckmann, K., and Coauthors, 2016: An imperative to monitor Earth’s energy imbalance. Nat. Climate Change, 6, 138144, https://doi.org/10.1038/nclimate2876.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 84 84 55
Full Text Views 17 17 6
PDF Downloads 24 24 7

Observational Constraint on Greenhouse Gas and Aerosol Contributions to Global Ocean Heat Content Changes

View More View Less
  • 1 LEGOS, UMR5566, CNRS, CNES, IRD, Université Paul Sabatier, Toulouse, France
  • 2 CNRM, University of Toulouse, Météo France, CNRS, Toulouse, France
© Get Permissions
Restricted access

Abstract

Observations and climate models are combined to identify an anthropogenic warming signature in the upper ocean heat content (OHC) changes since 1971. We apply a new detection and attribution analysis developed by Ribes et al. that uses a symmetric treatment of the magnitude and the pattern of the climate response to each radiative forcing. A first estimate of the OHC response to natural, anthropogenic, greenhouse gas, and other forcings is derived from a large ensemble of CMIP5 simulations. Observational datasets from historical reconstructions are then used to constrain this estimate. A spatiotemporal observational mask is applied to compare simulations with actual observations and to overcome reconstruction biases. Results on the 0–700-m layer from 1971 to 2005 show that the global OHC would have increased since 1971 by 2.12 ± 0.21 × 107 J m−2 yr−1 in response to GHG emissions alone. But this has been compensated for by other anthropogenic influences (mainly aerosol), which induced an OHC decrease of 0.84 ± 0.18 × 107 J m−2 yr−1. The natural forcing has induced a slight global OHC decrease since 1971 of 0.13 ± 0.09 × 107 J m−2 yr−1. Compared to previous studies we have separated the effect of the GHG forcing from the effect of the other anthropogenic forcing on OHC changes. This has been possible by using a new detection and attribution (D&A) method and by analyzing simultaneously the global OHC trends over 1957–80 and over 1971–2005. This bivariate method takes advantage of the different time variation of the GHG forcing and the aerosol forcing since 1957 to separate both effects and reduce the uncertainty in their estimates.

Denotes content that is immediately available upon publication as open access.

Corresponding author: Benoit Meyssignac, benoit.meyssignac@legos.obs-mip.fr

Abstract

Observations and climate models are combined to identify an anthropogenic warming signature in the upper ocean heat content (OHC) changes since 1971. We apply a new detection and attribution analysis developed by Ribes et al. that uses a symmetric treatment of the magnitude and the pattern of the climate response to each radiative forcing. A first estimate of the OHC response to natural, anthropogenic, greenhouse gas, and other forcings is derived from a large ensemble of CMIP5 simulations. Observational datasets from historical reconstructions are then used to constrain this estimate. A spatiotemporal observational mask is applied to compare simulations with actual observations and to overcome reconstruction biases. Results on the 0–700-m layer from 1971 to 2005 show that the global OHC would have increased since 1971 by 2.12 ± 0.21 × 107 J m−2 yr−1 in response to GHG emissions alone. But this has been compensated for by other anthropogenic influences (mainly aerosol), which induced an OHC decrease of 0.84 ± 0.18 × 107 J m−2 yr−1. The natural forcing has induced a slight global OHC decrease since 1971 of 0.13 ± 0.09 × 107 J m−2 yr−1. Compared to previous studies we have separated the effect of the GHG forcing from the effect of the other anthropogenic forcing on OHC changes. This has been possible by using a new detection and attribution (D&A) method and by analyzing simultaneously the global OHC trends over 1957–80 and over 1971–2005. This bivariate method takes advantage of the different time variation of the GHG forcing and the aerosol forcing since 1957 to separate both effects and reduce the uncertainty in their estimates.

Denotes content that is immediately available upon publication as open access.

Corresponding author: Benoit Meyssignac, benoit.meyssignac@legos.obs-mip.fr
Save