• Aiyyer, A. R., and C. Thorncroft, 2006: Climatology of vertical wind shear over the tropical Atlantic. J. Climate, 19, 29692983, https://doi.org/10.1175/JCLI3685.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., 2010: Reevaluating the role of the Saharan air layer in Atlantic tropical cyclogenesis and evolution. Mon. Wea. Rev., 138, 20072037, https://doi.org/10.1175/2009MWR3135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., J. A. Sippel, C.-L. Shie, and R. A. Boller, 2013: The evolution and role of the Saharan air layer during Hurricane Helene (2006). Mon. Wea. Rev., 141, 42694295, https://doi.org/10.1175/MWR-D-13-00045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bréon, F.-M., A. Vermeulen, and J. Descloitres, 2011: An evaluation of satellite aerosol products against sunphotometer measurements. Remote Sens. Environ., 115, 31023111, https://doi.org/10.1016/j.rse.2011.06.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burpee, R. W., 1972: The origin and structure of easterly waves in the lower troposphere of North Africa. J. Atmos. Sci., 29, 7790, https://doi.org/10.1175/1520-0469(1972)029<0077:TOASOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., and J. M. Prospero, 1972: The large-scale movement of Saharan air outbreaks over the northern equatorial Atlantic. J. Appl. Meteor., 11, 283297, https://doi.org/10.1175/1520-0450(1972)011<0283:TLSMOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., and S. G. Benjamin, 1980: Radiative heating rates for Saharan dust. J. Atmos. Sci., 37, 193213, https://doi.org/10.1175/1520-0469(1980)037<0193:RHRFSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., and K. A. Emanuel, 2010: A QuikSCAT climatology of tropical cyclone size. Geophys. Res. Lett., 37, L18816, https://doi.org/10.1029/2010GL044558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, K. H., 1999: Generation of the African easterly jet and its role in determining West African precipitation. J. Climate, 12, 11651184, https://doi.org/10.1175/1520-0442(1999)012<1165:GOTAEJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotton, W., H. Zhang, G. M. McFarquhar, and S. M. Saleeby, 2007: Should we consider polluting hurricanes to reduce their intensity? J. Wea. Modif., 39, 7073, https://www.journalofweathermodification.org/index.php/JWM/article/view/204.

    • Search Google Scholar
    • Export Citation
  • Davidi, A., A. B. Kostinski, I. Koren, and Y. Lehahn, 2012: Observational bounds on atmospheric heating by aerosol absorption: Radiative signature of transatlantic dust. Geophys. Res. Lett., 39, L04803, https://doi.org/10.1029/2011GL050358.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., K. Sassen, M. R. Poellot, D. Baumgardner, D. C. Rogers, S. D. Brooks, A. J. Prenni, and S. M. Kreidenweis, 2003: African dust aerosols as atmospheric ice nuclei. Geophys. Res. Lett., 30, 1732, https://doi.org/10.1029/2003GL017410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demuth, J., M. DeMaria, and J. A. Knaff, 2006: Improvement of Advanced Microwave Sounder Unit tropical cyclone intensity and size estimation algorithms. J. Appl. Meteor. Climatol., 45, 15731581, https://doi.org/10.1175/JAM2429.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaz, H., T. N. Carlson, and J. M. Prospero, 1976: A study of the structure and dynamics of the Saharan air layer over the equatorial Atlantic during BOMEX. NOAA Tech. Memo. ERL WMPO-32, 61 pp.

  • Dunion, J. P., 2011: Rewriting the climatology of the tropical North Atlantic and Caribbean Sea atmosphere. J. Climate, 24, 893908, https://doi.org/10.1175/2010JCLI3496.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., and C. S. Velden, 2004: The impact of the Saharan air layer on Atlantic tropical cyclone activity. Bull. Amer. Meteor. Soc., 85, 353366, https://doi.org/10.1175/BAMS-85-3-353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., and C. S. Marron, 2008: A reexamination of the Jordan mean tropical sounding based on awareness of the Saharan air layer: Results from 2002. J. Climate, 21, 52425253, https://doi.org/10.1175/2008JCLI1868.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686688, https://doi.org/10.1038/nature03906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evan, A. T., J. P. Dunion, J. A. Foley, A. K. Heidinger, and C. S. Velden, 2006: New evidence for a relationship between Atlantic tropical cyclone activity and African dust outbreaks. Geophys. Res. Lett., 33, L19813, https://doi.org/10.1029/2006GL026408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldmann, M., K. Emanuel, L. Zhu, and U. Lohmann, 2019: Estimation of Atlantic tropical cyclone rainfall frequency in the United States. J. Appl. Meteor. Climatol., 58, 18531866, https://doi.org/10.1175/JAMC-D-19-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitzpatrick, A., 1997: Understanding and forecasting tropical cyclone intensity change with the Typhoon Intensity Prediction Scheme (TIPS). Wea. Forecasting, 12, 826846, https://doi.org/10.1175/1520-0434(1997)012<0826:UAFTCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 1999: Effects of environmental flow upon tropical cyclone structure. Mon. Wea. Rev., 127, 20442061, https://doi.org/10.1175/1520-0493(1999)127<2044:EOEFUT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 22492269, https://doi.org/10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritz, C., and Z. Wang, 2013: A numerical study of the impacts of dry air on tropical cyclone formation: A development case and a nondevelopment case. J. Atmos. Sci., 70, 91111, https://doi.org/10.1175/JAS-D-12-018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goudie, A. S., and N. J. Middleton, 2001: Saharan dust storms: Nature and consequences. Earth-Sci. Rev., 56, 179204, https://doi.org/10.1016/S0012-8252(01)00067-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grist, J. P., 2002: Easterly waves over Africa. Part I: The seasonal cycle and contrasts between wet and dry years. Mon. Wea. Rev., 130, 197211, https://doi.org/10.1175/1520-0493(2002)130<0197:EWOAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herbener, S. R., S. C. van den Heever, G. G. Carrió, S. M. Saleeby, and W. R. Cotton, 2014: Aerosol indirect effects on idealized tropical cyclone dynamics. J. Atmos. Sci., 71, 20402055, https://doi.org/10.1175/JAS-D-13-0202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2014: Cloud Dynamics. 2nd ed. Elsevier/Academic Press, 432 pp.

  • Huang, J., C. Zhang, and J. M. Prospero, 2010: African dust outbreaks: A satellite perspective of temporal and spatial variability over the tropical Atlantic Ocean. J. Geophys. Res., 115, D0502, https://doi.org/10.1029/2009JD012516.

    • Search Google Scholar
    • Export Citation
  • Jenkins, G. S., A. S. Pratt, and A. Heymsfield, 2008: Possible linkages between Saharan dust and tropical cyclone rain band invigoration in the eastern Atlantic during NAMMA-06. Geophys. Res. Lett., 35, L08815, https://doi.org/10.1029/2008GL034072.

    • Search Google Scholar
    • Export Citation
  • Karyampudi, V. M., and T. N. Carlson, 1988: Analysis and numerical simulations of the Saharan air layer and its effect on easterly wave disturbances. J. Atmos. Sci., 45, 31023136, https://doi.org/10.1175/1520-0469(1988)045<3102:AANSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A., and B. Lynn, 2011: Simulation of tropical cyclones using a mesoscale model with spectral bin microphysics. Recent Hurricane Research— Climate, Dynamics, and Societal Impacts, A. R. Lupo, Ed., InTech, 197–227.

    • Crossref
    • Export Citation
  • Khain, A., N. Cohen, B. Lynn, and A. Pokrovsky, 2008: Possible aerosol effects on lightning activity and structure of hurricanes. J. Atmos. Sci., 65, 36523677, https://doi.org/10.1175/2008JAS2678.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimball, S. K., and M. S. Mulekar, 2004: A 15-year climatology of North Atlantic tropical cyclones. Part I: Size parameters. J. Climate, 17, 35553575, https://doi.org/10.1175/1520-0442(2004)017<3555:AYCONA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., S. P. Longmore, and D. A. Molenar, 2014: An objective satellite-based tropical cyclone size climatology. J. Climate, 27, 455476, https://doi.org/10.1175/JCLI-D-13-00096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laken, B. A., H. Parviainen, E. Pallé, and T. Shahbaz, 2013: Saharan mineral dust outbreaks observed over the North Atlantic island of La Palma in summertime between 1984 and 2012. Quart. J. Roy. Meteor. Soc., 140, 10581068, https://doi.org/10.1002/qj.2170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, W. K. M., and K.-M. Kim, 2007: How nature foiled the 2006 hurricane forecasts. Eos, Trans. Amer. Geophys. Union, 88, 105107, https://doi.org/10.1029/2007EO090002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levin, Z., E. Ganor, and V. Gladstein, 1996: The effects of desert particles coated with sulfate on rain formation in the eastern Mediterranean. J. Appl. Meteor., 35, 15111523, https://doi.org/10.1175/1520-0450(1996)035<1511:TEODPC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., E. L. Davies, J. G. Fairman, T. J. Galarneau, and D. M. Schultz, 2015: Revisiting the 26.5°C sea surface temperature threshold for tropical cyclone development. Bull. Amer. Meteor. Soc., 96, 19291943, https://doi.org/10.1175/BAMS-D-13-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merrill, R. T., 1984: A comparison of large and small tropical cyclones. Mon. Wea. Rev., 112, 14081418, https://doi.org/10.1175/1520-0493(1984)112<1408:ACOLAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. K. Smith, 2017: Recent developments in the fluid dynamics of tropical cyclones. Annu. Rev. Fluid Mech., 49, 541574, https://doi.org/10.1146/annurev-fluid-010816-060022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and M. G. McGauley, 2012: Tropical cyclogenesis in wind shear: Climatological relationships and physical processes. Cyclones: Formation, Triggers and Control, Nova Science Publishers, 1–36.

  • Palmén, E., 1948: On the formation and structure of tropical cyclones. Geophysica, 3, 2638.

  • Pielke, R., J. Gratz, C. Landsea, D. Collins, M. Saunders, and R. Musulin, 2008: Normalized hurricane damage in the United States: 1900–2005. Nat. Hazards Rev., 9, 2942, https://doi.org/10.1061/(ASCE)1527-6988(2008)9:1(29).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., P. Ginoux, O. Torres, S. E. Nicholson, and T. E. Gill, 2002: Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys., 40, 1002, https://doi.org/10.1029/2000RG000095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, K. A., J. T. Bacmeister, J. J. A. Huff, X. Wu, S. C. Bates, and N. A. Rosenbloom, 2019: Exploring the impact of dust on North Atlantic hurricanes in a high-resolution climate model. Geophys. Res. Lett., 46, 11051112, https://doi.org/10.1029/2018GL080642.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riehl, H., 1948: On the formation of typhoons. J. Meteor., 5, 247265, https://doi.org/10.1175/1520-0469(1948)005<0247:OTFOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2010: A new paradigm for intensity modification of tropical cyclones: Thermodynamic impact of vertical wind shear on the inflow layer. Atmos. Chem. Phys., 10, 31633188, https://doi.org/10.5194/acp-10-3163-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., M. Clavner, and R. Nirel, 2011: Pollution and dust aerosols modulating tropical cyclones intensities. Atmos. Res., 102, 6676, https://doi.org/10.1016/j.atmosres.2011.06.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., W. L. Woodley, A. Khain, W. R. Cotton, G. Carrió, I. Ginis, and J. H. Golden, 2012: Aerosol effects on microstructure and intensity of tropical cyclones. Bull. Amer. Meteor. Soc., 93, 9871001, https://doi.org/10.1175/BAMS-D-11-00147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schenkel, B. A., N. Lin, D. Chavas, M. Oppenheimer, and A. Brammer, 2017: Evaluating outer tropical cyclone size in reanalysis datasets using QuikSCAT data. J. Climate, 30, 87458762, https://doi.org/10.1175/JCLI-D-17-0122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shu, S., and L. Wu, 2009: Analysis of the influence of Saharan air layer on tropical cyclone intensity using AIRS/Aqua data. Geophys. Res. Lett., 36, L09809, https://doi.org/10.1029/2009GL037634.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, D., K. M. Lau, and M. Kafatos, 2008: Contrasting the 2007 and 2005 hurricane seasons: Evidence of possible impacts of Saharan dry air and dust on tropical cyclone activity in the Atlantic basin. Geophys. Res. Lett., 35, L15405, https://doi.org/10.1029/2008GL034529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, D., and F. Zhang, 2014: Effect of environmental shear, sea-surface temperature, and ambient moisture on the formation and predictability of tropical cyclones: An ensemble-mean perspective. J. Adv. Model. Earth Syst., 6, 384404, https://doi.org/10.1002/2014MS000314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thieuleux, F., C. Moulin, F. M. Bréon, F. Maignan, J. Poitou, and D. Tanré, 2005: Remote sensing of aerosols over the oceans using MSG/SEVIRI imagery. Ann. Geophys., 23, 35613568, https://doi.org/10.5194/angeo-23-3561-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., and M. Blackburn, 1999: Maintenance of the African easterly jet. Quart. J. Roy. Meteor. Soc., 125, 763786, https://doi.org/10.1002/qj.49712555502.

    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., 2015: Measurements of Saharan dust in convective clouds over the tropical eastern Atlantic Ocean. J. Atmos. Sci., 72, 7581, https://doi.org/10.1175/JAS-D-14-0133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., 2007: Impact of Saharan air layer on hurricane peak intensity. Geophys. Res. Lett., 34, L09802, https://doi.org/10.1029/2007GL029564.

  • Zhang, C., and J. Pennington, 2004: African dry air outbreaks. J. Geophys. Res., 109, D20108, https://doi.org/10.1029/2003JD003978.

  • Zhang, H., G. M. McFarquhar, S. M. Saleeby, and W. R. Cotton, 2007: Impacts of Saharan dust as CCN on the evolution of an idealized tropical cyclone. Geophys. Res. Lett., 34, L14812, https://doi.org/10.1029/2007GL029876.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, H., G. M. McFarquhar, W. R. Cotton, and Y. Deng, 2009: Direct and indirect impacts of Saharan dust acting as cloud condensation nuclei on tropical cyclone eyewall development. Geophys. Res. Lett., 36, L06802, https://doi.org/10.1029/2009GL037276.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 83 83 29
Full Text Views 23 23 8
PDF Downloads 31 31 8

When Does the Saharan Air Layer Impede the Intensification of Tropical Cyclones?

View More View Less
  • 1 Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
  • 2 Center for Climate System Modeling, ETH Zurich, Zurich, Switzerland
© Get Permissions
Restricted access

Abstract

We investigate the circumstances under which the Saharan air layer (SAL) has a negative impact on the intensification of tropical cyclones (TCs) over the North Atlantic Ocean. Using hurricane tracking, aerosol optical depth (AOD) data, and meteorological analyses, we analyze the interaction of the SAL with 52 named TCs that formed over the east and central Atlantic south of the Cape Verde islands between 2004 and 2017. Following the categorization of negative SAL influences on TC intensification by Dunion and Velden, only 21% of the investigated storms can be classified (28% of all storms that encountered the SAL), and 21% of the storms continue to intensify despite the presence of the SAL. We show that among TCs that encounter the SAL, there is evidence supporting a weak negative correlation between the magnitude of TC intensification and the ambient AOD. However, above-average Saharan dust abundance in the vicinity of TCs is not a good independent indicator for storm nonintensification. To better understand the specific processes involved, a composite study is carried out, contrasting storms that intensify in the presence of the SAL against those that do not. We find that sheared air masses on the north side and drier air from the northeast of the storm early on during its lifetime, in addition to higher AOD, are associated with TC nonintensification in proximity to the SAL.

Denotes content that is immediately available upon publication as open access.

Current affiliation: Department of Meteorology, University of Reading, Reading, United Kingdom.

Current affiliation: Risk Management Solutions, Zurich, Switzerland.

Corresponding author: Ulrike Lohmann, ulrike.lohmann@env.ethz.ch

Abstract

We investigate the circumstances under which the Saharan air layer (SAL) has a negative impact on the intensification of tropical cyclones (TCs) over the North Atlantic Ocean. Using hurricane tracking, aerosol optical depth (AOD) data, and meteorological analyses, we analyze the interaction of the SAL with 52 named TCs that formed over the east and central Atlantic south of the Cape Verde islands between 2004 and 2017. Following the categorization of negative SAL influences on TC intensification by Dunion and Velden, only 21% of the investigated storms can be classified (28% of all storms that encountered the SAL), and 21% of the storms continue to intensify despite the presence of the SAL. We show that among TCs that encounter the SAL, there is evidence supporting a weak negative correlation between the magnitude of TC intensification and the ambient AOD. However, above-average Saharan dust abundance in the vicinity of TCs is not a good independent indicator for storm nonintensification. To better understand the specific processes involved, a composite study is carried out, contrasting storms that intensify in the presence of the SAL against those that do not. We find that sheared air masses on the north side and drier air from the northeast of the storm early on during its lifetime, in addition to higher AOD, are associated with TC nonintensification in proximity to the SAL.

Denotes content that is immediately available upon publication as open access.

Current affiliation: Department of Meteorology, University of Reading, Reading, United Kingdom.

Current affiliation: Risk Management Solutions, Zurich, Switzerland.

Corresponding author: Ulrike Lohmann, ulrike.lohmann@env.ethz.ch
Save