• Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amador, J. A., 1998: A climatic feature of the tropical Americas: The trade wind easterly jet. Top. Meteor. Oceanogr., 5, 91102.

  • Anderson, T. G., K. J. Anchukaitis, D. Pons, and M. Taylor, 2019: Multiscale trends and precipitation extremes in the Central American midsummer drought. Environ. Res. Lett., 14, 124016, https://doi.org/10.1088/1748-9326/ab5023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, D. A., and Coauthors, 2019: Investigating the causes of increased twentieth-century fall precipitation over the southeastern United States. J. Climate, 32, 575590, https://doi.org/10.1175/JCLI-D-18-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and Coauthors, 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921938, https://doi.org/10.1175/BAMS-D-13-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Centella, A., A. Bezanilla, and K. Leslie, 2008: A study of the uncertainty in future Caribbean climate using the PRECIS regional climate model. Community Caribbean Climate Change Center Tech. Rep., 16 pp.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durán-Quesada, A. M., L. Gimeno, and J. Amador, 2017: Role of moisture transport for Central American precipitation. Earth Syst. Dyn., 8, 147161, https://doi.org/10.5194/esd-8-147-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., and E. J. Alfaro, 1999: The dependence of Caribbean rainfall on the interaction of the tropical Atlantic and Pacific Oceans. J. Climate, 12, 20932103, https://doi.org/10.1175/1520-0442(1999)012<2093:TDOCRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FAO, 2016: Situation report: Dry corridor in Central America. Food and Agriculture Organization of the United Nations, 3 pp., http://www.fao.org/-emergencies/resources/documents/resources-detail/en/c/422097/.

  • Fasullo, J. T., and P. J. Webster, 2002: Hydrological signatures relating the Asian summer monsoon and ENSO. J. Climate, 15, 30823095, https://doi.org/10.1175/1520-0442(2002)015<3082:HSRTAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gamble, D. W., and S. Curtis, 2008: Caribbean precipitation: Review, model and prospect. Prog. Phys. Geogr., 32, 265276, https://doi.org/10.1177/0309133308096027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giannini, A., Y. Kushnir, and M. Cane, 2000: Interannual variability of Caribbean rainfall, ENSO, and the Atlantic Ocean. J. Climate, 13, 297311, https://doi.org/10.1175/1520-0442(2000)013<0297:ivocre>2.0.co;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giannini, A., M. A. Cane, and Y. Kushnir, 2001a: Interdecadal changes in the ENSO teleconnection to the Caribbean region and the North Atlantic Oscillation. J. Climate, 14, 28672879, https://doi.org/10.1175/1520-0442(2001)014<2867:ICITET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giannini, A., J. C. Chiang, M. A. Cane, Y. Kushnir, and R. Seager, 2001b: The ENSO teleconnection to the tropical Atlantic Ocean: Contributions of the remote and local SSTs to rainfall variability in the tropical Americas. J. Climate, 14, 45304544, https://doi.org/10.1175/1520-0442(2001)014<4530:TETTTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hernández Ayala, J. J., and M. Heslar, 2019: Examining the spatiotemporal characteristics of droughts in the Caribbean using the standardized precipitation index (SPI). Climate Res., 78, 103116, https://doi.org/10.3354/cr01562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herrera, D., and T. R. Ault, 2017: Insights from a new high-resolution drought atlas for the Caribbean spanning 1950–2016. J. Climate, 30, 78017825, https://doi.org/10.1175/JCLI-D-16-0838.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herrera, D., T. R. Ault, J. T. Fasullo, S. J. Coats, C. M. Carrillo, B. I. Cook, and A. P. Williams, 2018: Exacerbation of the 2013–2016 Pan-Caribbean drought by anthropogenic warming. Geophys. Res. Lett., 45, 10 61910 626, https://doi.org/10.1029/2018gl079408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hidalgo, H. G., A. M. Durán-Quesada, J. A. Amador, and E. J. Alfaro, 2015: The Caribbean low-level jet, the inter-tropical convergence zone and precipitation patterns in the Intra-Americas Sea: A proposed dynamical mechanism. Geogr. Ann., 97A, 4159, https://doi.org/10.1111/geoa.12085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hidalgo, H. G., E. J. Alfaro, J. A. Amador, and A. Bastidas, 2019: Precursors of quasi-decadal dry spells in the Central America dry corridor. Climate Dyn., 53, 13071322, https://doi.org/10.1007/s00382-019-04638-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature version 5 (ERSSTv5), upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2014: Climate Change 2014: Synthesis Report. R. K. Pachauri and L. A. Meyer, Eds., IPCC, 151 pp.

  • Jury, M., B. A. Malmgren, and A. Winter, 2007: Subregional precipitation climate of the Caribbean and relationships with ENSO and NAO. J. Geophys. Res., 112, D16107, https://doi.org/10.1029/2006JD007541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karnauskas, K. B., J. P. Donnelly, and K. J. Anchukaitis, 2016: Future freshwater stress for island populations. Nat. Climate Change, 6, 720725, https://doi.org/10.1038/nclimate2987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karnauskas, K. B., C. F. Schleussner, J. P. Donelly, and K. J. Anchukaitis, 2018: Freshwater stress on small island developing states: Population projections and aridity changes at 1.5 and 2°C. Reg. Environ. Change, 18, 22732282, https://doi.org/10.1007/s10113-018-1331-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larsen, M. C., 2000: Analysis of 20th century rainfall and streamflow to characterize drought and water resources in Puerto Rico. Phys. Geogr., 21, 494521, https://doi.org/10.1080/02723646.2000.10642723.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magaña, V., J. A. Amador, and S. Medina, 1999: The midsummer drought over Mexico and Central America. J. Climate, 12, 15771588, https://doi.org/10.1175/1520-0442(1999)012<1577:TMDOMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, E. R., and C. Schumacher, 2011: Modulation of Caribbean precipitation by the Madden–Julian oscillation. J. Climate, 24, 813824, https://doi.org/10.1175/2010JCLI3773.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martinez, C., L. Goddard, Y. Kushnir, and M. Ting, 2019: Seasonal climatology and dynamical mechanisms of rainfall in the Caribbean. Climate Dyn., 53, 825846, https://doi.org/10.1007/s00382-019-04616-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Méndez, M., and V. Magaña, 2010: Regional aspects of prolonged meteorological droughts over Mexico and Central America. J. Climate, 23, 11751188, https://doi.org/10.1175/2009JCLI3080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., H. Münnich, H. Su, J. E. Meyerson, and C. E. Holloway, 2006: Tropical drying trends in global warming models and observations. Proc. Natl. Acad. Sci. USA, 103, 61106115, https://doi.org/10.1073/pnas.0601798103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • OCHA, 2015: Drought in Central America in 2015: Situation report (as of October 6, 2015). United Nations Office for the Coordination of Humanitarian Affairs (OCHA), 5 pp., https://reliefweb.int/report/guatemala/drought-central-america-2015-situation-report-october-6-2015.

  • Peters, E. J., 2015: The 2009/2010 Caribbean drought: A case study. Disasters, 39, 738761, https://doi.org/10.1111/disa.12123.

  • Rauscher, S. A., F. Giorgi, N. S. Diffenbaugh, and A. Seth, 2008: Extension and intensification of the Meso-American mid-summer drought in the twenty-first century. Climate Dyn., 31, 551571, https://doi.org/10.1007/s00382-007-0359-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, J. C., 1988: Precipitation variability over the Caribbean and tropical Americas associated with the Southern Oscillation. J. Climate, 1, 172182, https://doi.org/10.1175/1520-0442(1988)001<0172:PVOTCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, B. Rudolf, and M. Ziese, 2015a: GPCC full data reanalysis version 7.0 at 1.08: Monthly land-surface precipitation from rain-gauges built on GTS-based and historic data. Global Precipitation Climatology Centre, accessed October 2019, https://doi.org/10.5676/DWD_GPCC/FD_M_V7_100.

    • Crossref
    • Export Citation
  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, and M. Ziese, 2015b: GPCC monitoring product: Near real-time monthly land-surface precipitation from rain-gauges based on SYNOP and CLIMAT data. Global Precipitation Climatology Centre, accessed October 2019, https://doi.org/10.5676/DWD_GPCC/MP_M_V5_100.

    • Crossref
    • Export Citation
  • Seager, R., and N. Henderson, 2013: Diagnostic computation of moisture budgets in ERA-Interim reanalysis with reference of analysis of CMIP-archived atmospheric model data. J. Climate, 26, 78767901, https://doi.org/10.1175/JCLI-D-13-00018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., L. Goddard, J. Nakamura, N. Henderson, and D. E. Lee, 2014: Dynamical causes of the 2010/11 Texas–northern Mexico drought. J. Hydrometeor., 15, 3968, https://doi.org/10.1175/JHM-D-13-024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, M. A., D. B. Enfield, and A. A. Chen, 2002: Influence of the tropical Atlantic versus the tropical Pacific on Caribbean rainfall. J. Geophys. Res., 107, 3127, https://doi.org/10.1029/2001JC001097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, M. A., F. S. Whyte, T. S. Stephenson, and J. D. Campbell, 2013: Why dry? Investigating the future evolution of the Caribbean low-level jet to explain the projected Caribbean dying. Int. J. Climatol., 33, 784792, https://doi.org/10.1002/joc.3461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torres-Valcárcel, A. R., 2018: Teleconnections between ENSO and rainfall and drought in Puerto Rico. Int. J. Climatol., 38, e1190e1204, https://doi.org/10.1002/joc.5444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1991: Climate diagnostics from global analyses: Conservation of mass in ECMWF analyses. J. Climate, 4, 707722, https://doi.org/10.1175/1520-0442(1991)004<0707:CDFGAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and C. J. Guillemot, 1996: Physical processes involved in the 1988 drought and 1993 floods in North America. J. Climate, 9, 12881298, https://doi.org/10.1175/1520-0442(1996)009<1288:PPIITD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2018: Applications of an updated atmospheric energetics formulation. J. Climate, 31, 62636279, https://doi.org/10.1175/JCLI-D-17-0838.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. W. Hurrell, and A. Solomon, 1995: Conservation of mass in three dimensions in global analyses. J. Climate, 8, 692708, https://doi.org/10.1175/1520-0442(1995)008<0692:COMITD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and J. Mackaro, 2011: Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J. Climate, 24, 49074924, https://doi.org/10.1175/2011JCLI4171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, A. P., B. I. Cook, J. E. Smerdon, D. A. Bishop, R. Seager, and J. Mankin, 2017: The 2016 southeastern U.S. drought: An extreme departure from centennial wetting and cooling. J. Geophys. Res. Atmos., 122, 10 88810 905, https://doi.org/10.1002/2017jd027523.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 127 127 31
Full Text Views 19 19 7
PDF Downloads 29 29 17

Dynamical Characteristics of Drought in the Caribbean from Observations and Simulations

View More View Less
  • 1 Department of Earth, and Atmospheric Sciences, Cornell University, Ithaca, New York
  • 2 National Center for Atmospheric Research, Boulder, Colorado
  • 3 Department of Earth, and Atmospheric Sciences, Cornell University, Ithaca, New York
© Get Permissions
Restricted access

Abstract

Climate models consistently project a significant drying in the Caribbean during climate change, and between 2013 and 2016 the region experienced the worst multiyear drought in the historical period. Although dynamical mechanisms have been proposed to explain drought in the Caribbean, the contributions from mass convergence and advection to precipitation minus evaporation (PE) anomalies during drought are unknown. Here we analyze the dynamics of contemporaneous droughts in the Caribbean by decomposing the contributions of mass convergence and advection to PE using observational and simulated data. We find that droughts arise from an anomalous subsidence over the southeastern Caribbean and northeastern South America. Although the contributions from mass convergence and advection vary across the region, it is mass convergence that is the main driver of drought in our study area. A similar dynamical pattern is observed in simulated droughts using the Community Earth System Model (CESM) Large Ensemble (LENS).

Current affiliation: Universidad Autónoma de Santo Domingo, Santo Domingo, Dominican Republic.

Denotes content that is immediately available upon publication as open access.

Corresponding author: Dimitris A. Herrera, dah386@cornell.edu

Abstract

Climate models consistently project a significant drying in the Caribbean during climate change, and between 2013 and 2016 the region experienced the worst multiyear drought in the historical period. Although dynamical mechanisms have been proposed to explain drought in the Caribbean, the contributions from mass convergence and advection to precipitation minus evaporation (PE) anomalies during drought are unknown. Here we analyze the dynamics of contemporaneous droughts in the Caribbean by decomposing the contributions of mass convergence and advection to PE using observational and simulated data. We find that droughts arise from an anomalous subsidence over the southeastern Caribbean and northeastern South America. Although the contributions from mass convergence and advection vary across the region, it is mass convergence that is the main driver of drought in our study area. A similar dynamical pattern is observed in simulated droughts using the Community Earth System Model (CESM) Large Ensemble (LENS).

Current affiliation: Universidad Autónoma de Santo Domingo, Santo Domingo, Dominican Republic.

Denotes content that is immediately available upon publication as open access.

Corresponding author: Dimitris A. Herrera, dah386@cornell.edu
Save