• Barbero, R., H. J. Fowler, G. Lenderink, and S. Blenkinsop, 2017: Is the intensification of precipitation extremes with global warming better detected at hourly than daily resolutions? Geophys. Res. Lett., 44, 974983, https://doi.org/10.1002/2016GL071917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cho, H., K. P. Bowman, and G. R. North, 2004: A comparison of gamma and lognormal distributions for characterizing satellite rain rates from the Tropical Rainfall Measuring Mission. J. Appl. Meteor., 43, 15861597, https://doi.org/10.1175/JAM2165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deluca, A., and Á. Corral, 2010: Power laws and scaling of rain events and dry spells in the Catalonia region. Preprints, Centre de Recerca Matemática, 22 pp., http://hdl.handle.net/2072/152168.

  • Deluca, A., and Á. Corral, 2014: Scale invariant events and dry spells for medium-resolution local rain data. Nonlinear Processes Geophys., 21, 555567, https://doi.org/10.5194/npg-21-555-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di, T., Y. Guo, and W. J. Dong, 2015: Future changes and uncertainties in temperature and precipitation over China based on CMIP5 models. Adv. Atmos. Sci., 32, 487496, https://doi.org/10.1007/s00376-014-4102-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donat, M. G., A. L. Lowry, L. V. Alexander, P. A. O’Gorman, and N. Maher, 2016: More extreme precipitation in the world’s dry and wet regions. Nat. Climate Change, 6, 508513, https://doi.org/10.1038/nclimate2941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, A., M. Wang, Y. Lei, and Y. Cui, 2013: Trends in summer rainfall over China associated with the Tibetan Plateau sensible heat source during 1980–2008. J. Climate, 26, 261275, https://doi.org/10.1175/JCLI-D-11-00669.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García-Marín, A. P., F. J. Jiménez-Hornero, and J. L. Ayuso, 2007: Applying multifractality and the self-organized criticality theory to describe the temporal rainfall regimes in Andalusia (southern Spain). Hydrol. Processes, 22, 295308, https://doi.org/10.1002/hyp.6603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., and Coauthors, 1999: Changes in the probability of heavy precipitation: Important indicators of climatic change. Climatic Change, 42, 243283, https://doi.org/10.1023/A:1005432803188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2014: Summary for policymakers. Climate Change 2014: Impacts, Adaptation, and Vulnerability, C. B. Field et al., Eds., Cambridge University Press, 1–32.

  • Kharin, V. V., F. W. Zwiers, X. Zhang, and M. Wehner, 2013: Changes in temperature and precipitation extremes in the CMIP5 ensemble. Climatic Change, 119, 345357, https://doi.org/10.1007/s10584-013-0705-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenderink, G., and E. van Meijgaard, 2008: Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci., 1, 511514, https://doi.org/10.1038/ngeo262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, B., M. Xu, M. Henderson, and Y. Qi, 2005: Observed trends of precipitation amount, frequency, and intensity in China, 1960–2000. J. Geophys. Res., 110, D08103, https://doi.org/10.1029/2004JD004864.

    • Search Google Scholar
    • Export Citation
  • Ma, S., and T. Zhou, 2015: Observed trends in the timing of wet and dry season in China and the associated changes in frequency and duration of daily precipitation. Int. J. Climatol., 35, 46314641, https://doi.org/10.1002/joc.4312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, S., T. Zhou, A. Dai, and Z. Han, 2015: Observed changes in the distributions of daily precipitation frequency and amount over China from 1960 to 2013. J. Climate, 28, 69606978, https://doi.org/10.1175/JCLI-D-15-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, S., and Coauthors, 2017: Detectable anthropogenic shift toward heavy precipitation over eastern China. J. Climate, 30, 13811396, https://doi.org/10.1175/JCLI-D-16-0311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martinez-Villalobos, C., and J. D. Neelin, 2018: Shifts in precipitation accumulation extremes during the warm season over the United States. Geophys. Res. Lett., 45, 85868595, https://doi.org/10.1029/2018GL078465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martinez-Villalobos, C., and J. D. Neelin, 2019: Why do precipitation intensities tend to follow gamma distributions? J. Atmos. Sci., 76, 36113631, https://doi.org/10.1175/JAS-D-18-0343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muschinski, T., and J. I. Katz, 2013: Trends in hourly rainfall statistics in the United States under a warming climate. Nat. Climate Change, 3, 577580, https://doi.org/10.1038/nclimate1828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Report Committee, 2007: China’s National Assessment Report on Climate Change (in Chinese). Science Press, 422 pp.

  • Neelin, J. D., S. Sahany, S. N. Stechmann, and D. Bernstein, 2017: Global warming precipitation accumulation increases above the current-climate cutoff scale. Proc. Natl. Acad. Sci. USA, 114, 12581263, https://doi.org/10.1073/pnas.1615333114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norris, J., G. Chen, and J. D. Neelin, 2019: Changes in frequency of large precipitation accumulations over land in a warming climate from the CESM large ensemble: The roles of moisture, circulation, and duration. J. Climate, 32, 53975416, https://doi.org/10.1175/JCLI-D-18-0600.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., 2018: What precipitation is extreme? Science, 360, 10721073, https://doi.org/10.1126/science.aat1871.

  • Pendergrass, A. G., and D. L. Hartmann, 2014: Changes in the distribution of rain frequency and intensity in response to global warming. J. Climate, 27, 83728383, https://doi.org/10.1175/JCLI-D-14-00183.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, O., C. Hertlein, and K. Christensen, 2001: A complexity view of rainfall. Phys. Rev. Lett., 88, 018701, https://doi.org/10.1103/PhysRevLett.88.018701.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, O., A. Deluca, A. Corral, J. D. Neelin, and C. E. Holloway, 2010: Universality of rain event size distributions. J. Stat. Mech., 11, P11030, https://doi.org/10.1088/1742-5468/2010/11/P11030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., R. M. Rasmussen, K. Ikeda, C. Liu, M. P. Clark, and G. J. Holland, 2017: The future intensification of hourly precipitation extremes. Nat. Climate Change, 7, 4852, https://doi.org/10.1038/nclimate3168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, G., Y. Ren, Y. Zhan, X. Sun, Y. Liu, Y. Chen, and T. Wang, 2015: Spatial and temporal patterns of precipitation variability over mainland China. II: Recent trends (in Chinese). Adv. Water Sci., 26, 451465, https://doi.org/10.14042/j.cnki.32.1309.2015.04.001.

    • Search Google Scholar
    • Export Citation
  • Ren, G., and Coauthors, 2016: Spatial and temporal patterns of precipitation variability over mainland China. III: Causes for recent trends (in Chinese). Adv. Water Sci., 27, 327348, https://doi.org/10.14042/j.cnki.32.1309.2016.03.001.

    • Search Google Scholar
    • Export Citation
  • Ren, G., Y. Ding, and G. Tang, 2017: An overview of mainland China temperature change research. J. Meteor. Res., 31, 316, https://doi.org/10.1007/s13351-017-6195-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, Z. H., and Coauthors, 2010: Quality control procedures for hourly precipitation data from automatic weather stations in China (in Chinese). Meteor. Mon., 36, 123132.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O’Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 13091313, https://doi.org/10.1126/science.1160606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, P., M. Wu, S. Qu, P. Jiang, X. Qiao, X. Chen, M. Zhou, and Z. Zhang, 2015: Spatial distribution and temporal trends in precipitation concentration indices for the Southwest China. Water Resour. Manage., 29, 39413955, https://doi.org/10.1007/s11269-015-1038-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sillmann, J., V. V. Kharin, F. W. Zwiers, X. Zhang, and D. Bronaugh, 2013: Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J. Geophys. Res. Atmos., 118, 24732493, https://doi.org/10.1002/jgrd.50188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stechmann, S. N., and J. D. Neelin, 2011: A stochastic model for the transition to strong convection. J. Atmos. Sci., 68, 29552970, https://doi.org/10.1175/JAS-D-11-028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stechmann, S. N., and J. D. Neelin, 2014: First-passage-time prototypes for precipitation statistics. J. Atmos. Sci., 71, 32693291, https://doi.org/10.1175/JAS-D-13-0268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y., S. Solomon, A. Dai, and R. Portmann, 2007: How often will it rain? J. Climate, 20, 48014818, https://doi.org/10.1175/JCLI4263.1.

  • Trenberth, K. E., 2011: Changes in precipitation with climate change. Climate Res., 47, 123138, https://doi.org/10.3354/cr00953.

  • Wang, Y., and L. Zhou, 2005: Observed trends in extreme precipitation events in China during 1961–2001 and the associated changes in large-scale circulation. Geophys. Res. Lett., 32, L09707, https://doi.org/10.1029/2005GL023769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wasko, C., and R. Nathan, 2019: The local dependency of precipitation on historical changes in temperature. Climatic Change, 156, 105120, https://doi.org/10.1007/s10584-019-02523-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westra, S., L. V. Alexander, and F. W. Zwiers, 2013: Global increasing trends in annual maximum daily precipitation. J. Climate, 26, 39043918, https://doi.org/10.1175/JCLI-D-12-00502.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., Y. Du, J. Tang, and Y. Wang, 2011: Variations of temperature and precipitation extremes in recent two decades over China. Atmos. Res., 101, 143154, https://doi.org/10.1016/j.atmosres.2011.02.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Y., X. Gao, F. Giorgi, B. Zhou, Y. Shi, J. Wu, and Y. Zhang, 2018: Projected changes in temperature and precipitation extremes over China as measured by 50-yr return values and periods based on a CMIP5 ensemble. Adv. Atmos. Sci., 35, 376388, https://doi.org/10.1007/s00376-017-6269-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, P., J. Xia, Y. Zhang, and S. Hong, 2017: Temporal and spatial variations of precipitation in Northwest China during 1960–2013. Atmos. Res., 183, 283295, https://doi.org/10.1016/j.atmosres.2016.09.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Q., Z. Ma, X. Fan, Z. Yang, Z. Xu, and P. Wu, 2017: Decadal modulation of precipitation patterns over eastern China by sea surface temperature anomalies. J. Climate, 30, 70177033, https://doi.org/10.1175/JCLI-D-16-0793.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Q., and Coauthors, 2011: Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961–2003. Climate Dyn., 36, 23992417, https://doi.org/10.1007/s00382-009-0735-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, P. M., X. Zhang, H. Wan, and X. Pan, 2005: Trends in total precipitation and frequency of daily precipitation extremes over China. J. Climate, 18, 10961108, https://doi.org/10.1175/JCLI-3318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R.-H., 2015: Natural and human-induced changes in summer climate over the east Asian monsoon region in the last half century: A review. Adv. Climate Change Res., 6, 131140, https://doi.org/10.1016/j.accre.2015.09.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., and T. Zhou, 2019: Significant increases in extreme precipitation and the associations with global warming over the global land monsoon regions. J. Climate, 32, 84658488, https://doi.org/10.1175/JCLI-D-18-0662.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, Z. F., and G. Ren, 2017: Effects of gauge under-catch on precipitation observation and long-term trend estimates in Beijing area (in Chinese). Adv. Water Sci., 28, 662670, https://doi.org/10.14042/j.cnki.32.1309.2017.05.003.

    • Search Google Scholar
    • Export Citation
  • Zhou, B., Y. Xu, J. Wu, S. Dong, and Y. Shi, 2016: Changes in temperature and precipitation extreme indices over China: Analysis of a high-resolution grid dataset. Int. J. Climatol., 36, 10511066, https://doi.org/10.1002/joc.4400.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 169 169 91
Full Text Views 70 70 55
PDF Downloads 84 84 61

Changes in Extreme Precipitation Accumulations during the Warm Season over Continental China

View More View Less
  • 1 Department of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan, China
  • 2 Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California
  • 3 Centro de Estudios Avanzados en Zonas Áridas, Coquimbo, Chile
  • 4 Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, Beijing, China
  • 5 Jilin Provincial Key Laboratory of Changbai Mountain Meteorology and Climate Change, Laboratory of Research for Middle-High Latitude Circulation Systems and East Asian Monsoon, Institute of Meteorological Sciences of Jilin Province, Changchun, China
  • 6 LASG, Institute of Atmospheric Physics, Chinese Academy of Science, Beijing, China
© Get Permissions
Restricted access

Abstract

Precipitation accumulations, integrated over rainfall events, are investigated using hourly data across continental China during the warm season (May–October) from 1980 to 2015. Physically, the probability of precipitation accumulations drops slowly with event size up to an approximately exponential cutoff scale sL where probability drops much faster. Hence sL can be used as an indicator of high accumulation percentiles (i.e., extreme precipitation accumulations). Overall, the climatology of sL over continental China is about 54 mm. In terms of cutoff changes, the current warming stage (1980–2015) is divided into two periods, 1980–97 and 1998–2015. We find that the cutoff in 1998–2015 increases about 5.6% compared with that of 1980–97, with an average station increase of 4.7%. Regionally, sL increases are observed over East China (10.9% ± 1.5%), Northwest China (9.7% ± 2.5%), South China (9.4% ± 1.4%), southern Southwest China (5.6% ± 1.2%), and Central China (5.3% ± 1.0%), with decreases over North China (−10.3% ± 1.3%), Northeast China (−4.9% ± 1.5%), and northern Southwest China (−3.9% ± 1.8%). The conditional risk ratios for five subregions with increased cutoff sL are all greater than 1.0, indicating an increased risk of large precipitation accumulations in the most recent period. For high precipitation accumulations larger than the 99th percentile of accumulation s99, the risk of extreme precipitation over these regions can increase above 20% except for South China. These increases of extreme accumulations can be largely explained by the extended duration of extreme accumulation events, especially for “extremely extreme” precipitation greater than s99.

Corresponding author: Bo Liu, boliu@cug.edu.cn

Abstract

Precipitation accumulations, integrated over rainfall events, are investigated using hourly data across continental China during the warm season (May–October) from 1980 to 2015. Physically, the probability of precipitation accumulations drops slowly with event size up to an approximately exponential cutoff scale sL where probability drops much faster. Hence sL can be used as an indicator of high accumulation percentiles (i.e., extreme precipitation accumulations). Overall, the climatology of sL over continental China is about 54 mm. In terms of cutoff changes, the current warming stage (1980–2015) is divided into two periods, 1980–97 and 1998–2015. We find that the cutoff in 1998–2015 increases about 5.6% compared with that of 1980–97, with an average station increase of 4.7%. Regionally, sL increases are observed over East China (10.9% ± 1.5%), Northwest China (9.7% ± 2.5%), South China (9.4% ± 1.4%), southern Southwest China (5.6% ± 1.2%), and Central China (5.3% ± 1.0%), with decreases over North China (−10.3% ± 1.3%), Northeast China (−4.9% ± 1.5%), and northern Southwest China (−3.9% ± 1.8%). The conditional risk ratios for five subregions with increased cutoff sL are all greater than 1.0, indicating an increased risk of large precipitation accumulations in the most recent period. For high precipitation accumulations larger than the 99th percentile of accumulation s99, the risk of extreme precipitation over these regions can increase above 20% except for South China. These increases of extreme accumulations can be largely explained by the extended duration of extreme accumulation events, especially for “extremely extreme” precipitation greater than s99.

Corresponding author: Bo Liu, boliu@cug.edu.cn
Save