• Adam, O., and Coauthors, 2018: The TropD software package (v1): Standardized methods for calculating tropical-width diagnostics. Geosci. Model Dev., 11, 43394357, https://doi.org/10.5194/gmd-11-4339-2018.

    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 228232, https://doi.org/10.1038/nature01092.

    • Search Google Scholar
    • Export Citation
  • Bintanja, R., and F. Selten, 2014: Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat. Nature, 509, 479482, https://doi.org/10.1038/nature13259.

    • Search Google Scholar
    • Export Citation
  • Cubasch, U., and Coauthors, 2001: Projections of future climate change. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 526–582.

  • Flannaghan, T., S. Fueglistaler, I. Held, S. Po-Chedley, B. Wyman, and M. Zhao, 2014: Tropical temperature trends in atmospheric general circulation model simulations and the impact of uncertainties in observed SSTs. J. Geophys. Res. Atmos., 119, 13 32713 337, https://doi.org/10.1002/2014JD022365.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., D. W. Waugh, and L. M. Polvani, 2015: Recent Hadley cell expansion: The role of internal atmospheric variability in reconciling modeled and observed trends. Geophys. Res. Lett., 42, 10 82410 831, https://doi.org/10.1002/2015GL066942.

    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., and S.-W. Son, 2014: Quantifying the summertime response of the austral jet stream and Hadley cell to stratospheric ozone and greenhouse gases. J. Climate, 27, 55385559, https://doi.org/10.1175/JCLI-D-13-00539.1.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and P. Lionello, 2008: Climate change projections for the Mediterranean region. Global Planet. Change, 63, 90104, https://doi.org/10.1016/j.gloplacha.2007.09.005.

    • Search Google Scholar
    • Export Citation
  • Gonzalez, P. L., L. M. Polvani, R. Seager, and G. J. Correa, 2014: Stratospheric ozone depletion: A key driver of recent precipitation trends in south eastern South America. Climate Dyn., 42, 17751792, https://doi.org/10.1007/s00382-013-1777-x.

    • Search Google Scholar
    • Export Citation
  • Guo, D., Y. Gao, I. Bethke, D. Gong, O. M. Johannessen, and H. Wang, 2014: Mechanism on how the spring Arctic sea ice impacts the East Asian summer monsoon. Theor. Appl. Climatol., 115, 107119, https://doi.org/10.1007/s00704-013-0872-6.

    • Search Google Scholar
    • Export Citation
  • Haylock, M., N. Hofstra, A. Klein Tank, E. Klok, P. Jones, and M. New, 2008: A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res., 113, D20119, https://doi.org/10.1029/2008JD010201.

    • Search Google Scholar
    • Export Citation
  • He, J., and B. J. Soden, 2017: A re-examination of the projected subtropical precipitation decline. Nat. Climate Change, 7, 5357, https://doi.org/10.1038/nclimate3157.

    • Search Google Scholar
    • Export Citation
  • Holton, J., and G. Hakim, 2013: An Introduction to Dynamic Meteorology. Academic Press, 532 pp.

  • Hu, Y., L. Tao, and J. Liu, 2013: Poleward expansion of the Hadley circulation in CMIP5 simulations. Adv. Atmos. Sci., 30, 790795, https://doi.org/10.1007/s00376-012-2187-4.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., H. Huang, and C. Zhou, 2018: Widening and weakening of the Hadley circulation under global warming. Sci. Bull., 63, 640644, https://doi.org/10.1016/j.scib.2018.04.020.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. S. Solomon et al., Eds., Cambridge University Press, 996 pp.

  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. T. F. Stocker et al., Eds., Cambridge University Press, 1535 pp.

  • Kang, S. M., L. M. Polvani, J. C. Fyfe, and M. Sigmond, 2011: Impact of polar ozone depletion on subtropical precipitation. Science, 332, 951954, https://doi.org/10.1126/science.1202131.

    • Search Google Scholar
    • Export Citation
  • Karpechko, A. Y., and E. Manzini, 2012: Stratospheric influence on tropospheric climate change in the Northern Hemisphere. J. Geophys. Res., 117, D05133, https://doi.org/10.1029/2011JD017036.

    • Search Google Scholar
    • Export Citation
  • Kelley, C., M. Ting, R. Seager, and Y. Kushnir, 2012: Mediterranean precipitation climatology, seasonal cycle, and trend as simulated by CMIP5. Geophys. Res. Lett., 39, L21703, https://doi.org/10.1029/2012GL053416.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. T. Wetherald, 1980: On the distribution of climate change resulting from an increase in CO2 content of the atmosphere. J. Atmos. Sci., 37, 99118, https://doi.org/10.1175/1520-0469(1980)037<0099:OTDOCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Manzini, E., and Coauthors, 2014: Northern winter climate change: Assessment of uncertainty in CMIP5 projections related to stratosphere–troposphere coupling. J. Geophys. Res. Atmos., 119, 79797998, https://doi.org/10.1002/2013JD021403.

    • Search Google Scholar
    • Export Citation
  • Manzini, E., A. Y. Karpechko, and L. Kornblueh, 2018: Nonlinear response of the stratosphere and the North Atlantic–European climate to global warming. Geophys. Res. Lett., 45, 42554263, https://doi.org/10.1029/2018GL077826.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D., P. Thorne, P. Stott, and L. Gray, 2013: Revisiting the controversial issue of tropical tropospheric temperature trends. Geophys. Res. Lett., 40, 28012806, https://doi.org/10.1002/grl.50465.

    • Search Google Scholar
    • Export Citation
  • Mitchell, J. F., 1983: The seasonal response of a general circulation model to changes in CO2 and sea temperatures. Quart. J. Roy. Meteor. Soc., 109, 113152, https://doi.org/10.1002/qj.49710945906.

    • Search Google Scholar
    • Export Citation
  • Monerie, P.-A., T. Oudar, and E. Sanchez-Gomez, 2019: Respective impacts of Arctic sea ice decline and increasing greenhouse gases concentration on Sahel precipitation. Climate Dyn., 52, 59475964, https://doi.org/10.1007/s00382-018-4488-5.

    • Search Google Scholar
    • Export Citation
  • Po-Chedley, S., and Q. Fu, 2012: Discrepancies in tropical upper tropospheric warming between atmospheric circulation models and satellites. Environ. Res. Lett., 7, 044018, https://doi.org/10.1088/1748-9326/7/4/044018.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., M. Previdi, and C. Deser, 2011: Large cancellation, due to ozone recovery, of future Southern Hemisphere atmospheric circulation trends. Geophys. Res. Lett., 38, L04707, https://doi.org/10.1029/2011GL046712.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2017: Causes of differences in model and satellite tropospheric warming rates. Nat. Geosci., 10, 478485, https://doi.org/10.1038/ngeo2973.

    • Search Google Scholar
    • Export Citation
  • Scheff, J., and D. Frierson, 2012a: Twenty-first-century multimodel subtropical precipitation declines are mostly midlatitude shifts. J. Climate, 25, 43304347, https://doi.org/10.1175/JCLI-D-11-00393.1.

    • Search Google Scholar
    • Export Citation
  • Scheff, J., and D. Frierson, 2012b: Robust future precipitation declines in CMIP5 largely reflect the poleward expansion of model subtropical dry zones. Geophys. Res. Lett., 39, L18704, https://doi.org/10.1029/2012GL052910.

    • Search Google Scholar
    • Export Citation
  • Schmidt, D. F., and K. M. Grise, 2017: The response of local precipitation and sea level pressure to Hadley cell expansion. Geophys. Res. Lett., 44, 10 57310 582, https://doi.org/10.1002/2017GL075380.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, and G. A. Vecchi, 2010: Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Climate, 23, 46514668, https://doi.org/10.1175/2010JCLI3655.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., H. Liu, N. Henderson, I. Simpson, C. Kelley, T. Shaw, Y. Kushnir, and M. Ting, 2014: Causes of increasing aridification of the Mediterranean region in response to rising greenhouse gases. J. Climate, 27, 46554676, https://doi.org/10.1175/JCLI-D-13-00446.1.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., M. Free, and J. S. Wang, 2012: Reexamining the warming in the tropical upper troposphere: Models versus radiosonde observations. Geophys. Res. Lett., 39, L22701, https://doi.org/10.1029/2012GL053850.

    • Search Google Scholar
    • Export Citation
  • Sheather, S., 2009: A Modern Approach to Regression with R. Springer, 393 pp.

  • Shepherd, T. G., 2014: Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci., 7, 703708, https://doi.org/10.1038/ngeo2253.

    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., R. Seager, M. Ting, and T. A. Shaw, 2016: Causes of change in Northern Hemisphere winter meridional winds and regional hydroclimate. Nat. Climate Change, 6, 6570, https://doi.org/10.1038/nclimate2783.

    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., P. Hitchcock, R. Seager, Y. Wu, and P. Callaghan, 2018: The downward influence of uncertainty in the Northern Hemisphere stratospheric polar vortex response to climate change. J. Climate, 31, 63716391, https://doi.org/10.1175/JCLI-D-18-0041.1.

    • Search Google Scholar
    • Export Citation
  • Staten, P. W., J. Lu, K. M. Grise, S. M. Davis, and T. Birner, 2018: Re-examining tropical expansion. Nat. Climate Change, 8, 768775, https://doi.org/10.1038/s41558-018-0246-2.

    • Search Google Scholar
    • Export Citation
  • Tandon, N. F., E. P. Gerber, A. H. Sobel, and L. M. Polvani, 2013: Understanding Hadley cell expansion versus contraction: Insights from simplified models and implications for recent observations. J. Climate, 26, 43044321, https://doi.org/10.1175/JCLI-D-12-00598.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., P. Zurita-Gotor, C. Cairns, and J. Kidston, 2015: Response of the large-scale structure of the atmosphere to global warming. Quart. J. Roy. Meteor. Soc., 141, 14791501, https://doi.org/10.1002/qj.2456.

    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., C. Garfinkel, and L. M. Polvani, 2015: Drivers of the recent tropical expansion in the Southern Hemisphere: Changing SSTs or ozone depletion? J. Climate, 28, 65816586, https://doi.org/10.1175/JCLI-D-15-0138.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Academic Press, 676 pp.

  • Wilks, D. S., 2016: “The stippling shows statistically significant grid points”: How research results are routinely overstated and overinterpreted, and what to do about it. Bull. Amer. Meteor. Soc., 97, 22632273, https://doi.org/10.1175/BAMS-D-15-00267.1.

    • Search Google Scholar
    • Export Citation
  • Zappa, G., and T. G. Shepherd, 2017: Storylines of atmospheric circulation change for European regional climate impact assessment. J. Climate, 30, 65616577, https://doi.org/10.1175/JCLI-D-16-0807.1.

    • Search Google Scholar
    • Export Citation
  • Zappa, G., B. J. Hoskins, and T. G. Shepherd, 2015: The dependence of wintertime Mediterranean precipitation on the atmospheric circulation response to climate change. Environ. Res. Lett., 10, 104012, https://doi.org/10.1088/1748-9326/10/10/104012.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1 1 1
Full Text Views 0 0 0
PDF Downloads 0 0 0

The Role of Zonally Averaged Climate Change in Contributing to Intermodel Spread in CMIP5 Predicted Local Precipitation Changes

View More View Less
  • 1 Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University, Jerusalem, Israel
  • 2 Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University, Jerusalem, and Department of Natural Sciences, The Open University of Israel, Raanana, Israel
  • 3 Department of Applied Mathematics, Environmental Sciences Division, Israel Institute for Biological Research, Ness-Ziona, Israel
  • 4 Department of Geography, Hebrew University, Jerusalem, Israel
© Get Permissions
Restricted access

Abstract

While CMIP5 models robustly project drying of the subtropics and more precipitation in the tropics and subpolar latitudes by the end of the century, the magnitude of these changes in precipitation varies widely across models: for example, some models simulate no drying in the eastern Mediterranean while others simulate more than a 50% reduction in precipitation relative to the model-simulated present-day value. Furthermore, the factors leading to changes in local subtropical precipitation remain unclear. The importance of zonal-mean changes in atmospheric structure for local precipitation changes is explored in 42 CMIP5 models. It is found that up to half of the local intermodel spread over the Mediterranean, northern Mexico, East Asia, southern Africa, southern Australia, and southern South America is related to the intermodel spread in large-scale processes such as the magnitude of globally averaged surface temperature increases, Hadley cell widening, polar amplification, stabilization of the tropical upper troposphere, or changes in the polar stratosphere. Globally averaged surface temperature increases account for intermodel spread in land subtropical drying in the Southern Hemisphere but are not important for land drying adjacent to the Mediterranean. The factors associated with drying over the eastern Mediterranean and western Mediterranean differ, with stabilization of the tropical upper troposphere being a crucial factor for the former only. Differences in precipitation between the western and eastern Mediterranean are also evident on interannual time scales. In contrast, the global factors examined here are unimportant over most of the United States, and more generally over the interior of continents. Much of the rest of the spread can be explained by variations in local relative humidity, a proxy also for zonally asymmetric circulation and thermodynamic changes.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-19-0232.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chaim I. Garfinkel, chaim.garfinkel@mail.huji.ac.il

Abstract

While CMIP5 models robustly project drying of the subtropics and more precipitation in the tropics and subpolar latitudes by the end of the century, the magnitude of these changes in precipitation varies widely across models: for example, some models simulate no drying in the eastern Mediterranean while others simulate more than a 50% reduction in precipitation relative to the model-simulated present-day value. Furthermore, the factors leading to changes in local subtropical precipitation remain unclear. The importance of zonal-mean changes in atmospheric structure for local precipitation changes is explored in 42 CMIP5 models. It is found that up to half of the local intermodel spread over the Mediterranean, northern Mexico, East Asia, southern Africa, southern Australia, and southern South America is related to the intermodel spread in large-scale processes such as the magnitude of globally averaged surface temperature increases, Hadley cell widening, polar amplification, stabilization of the tropical upper troposphere, or changes in the polar stratosphere. Globally averaged surface temperature increases account for intermodel spread in land subtropical drying in the Southern Hemisphere but are not important for land drying adjacent to the Mediterranean. The factors associated with drying over the eastern Mediterranean and western Mediterranean differ, with stabilization of the tropical upper troposphere being a crucial factor for the former only. Differences in precipitation between the western and eastern Mediterranean are also evident on interannual time scales. In contrast, the global factors examined here are unimportant over most of the United States, and more generally over the interior of continents. Much of the rest of the spread can be explained by variations in local relative humidity, a proxy also for zonally asymmetric circulation and thermodynamic changes.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-19-0232.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chaim I. Garfinkel, chaim.garfinkel@mail.huji.ac.il

Supplementary Materials

    • Supplemental Materials (PDF 13.46 MB)
Save