• Antinao, J. L., and L. M. Farfán, 2013: Occurrence of landslides during the approach of tropical cyclone Juliette (2001) to Baja California Sur, Mexico. Atmósfera, 26, 183208, https://doi.org/10.1016/S0187-6236(13)71071-3.

    • Search Google Scholar
    • Export Citation
  • Archambault, H. M., L. F. Bosart, D. Keyser, and A. R. Aiyyer, 2008: Influence of large-scale flow regimes on cool-season precipitation in the northeastern United States. Mon. Wea. Rev., 136, 29452963, https://doi.org/10.1175/2007MWR2308.1.

    • Search Google Scholar
    • Export Citation
  • Aryal, Y. N., G. Villarini, W. Zhang, and G. A. Vecchi, 2018: Long term changes in flooding and heavy rainfall associated with North Atlantic tropical cyclones: Roles of the North Atlantic Oscillation and El Niño–Southern Oscillation. J. Hydrol., 559, 698710, https://doi.org/10.1016/j.jhydrol.2018.02.072.

    • Search Google Scholar
    • Export Citation
  • Ashouri, H., K. L. Hsu, S. Sorooshian, D. K. Braithwaite, K. R. Knapp, L. D. Cecil, B. R. Nelson, and O. P. Prat, 2015: PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Amer. Meteor. Soc., 96, 6983, https://doi.org/10.1175/BAMS-D-13-00068.1.

    • Search Google Scholar
    • Export Citation
  • Atallah, E., L. F. Bosart, and A. R. Aiyyer, 2007: Precipitation distribution associated with landfalling tropical cyclones over the eastern United States. Mon. Wea. Rev., 135, 21852206, https://doi.org/10.1175/MWR3382.1.

    • Search Google Scholar
    • Export Citation
  • Benedetti, A., P. Lopez, E. Moreau, P. Bauer, and V. Venugopal, 2005: Verification of TMI-adjusted rainfall analyses of tropical cyclones at ECMWF using TRMM precipitation radar. J. Appl. Meteor., 44, 16771690, https://doi.org/10.1175/JAM2300.1.

    • Search Google Scholar
    • Export Citation
  • Bove, M. C., J. B. Elsner, C. W. Landsea, X. Niu, and J. J. O’Brien, 1998: Effect of El Niño on U.S. landfalling hurricanes, revisited. Bull. Amer. Meteor. Soc., 79, 24772482, https://doi.org/10.1175/1520-0477(1998)079<2477:EOENOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brun, J., and A. P. Barros, 2014: Mapping the role of tropical cyclones on the hydroclimate of the southeast United States: 2002–2011. Int. J. Climatol., 34, 494517, https://doi.org/10.1002/joc.3703.

    • Search Google Scholar
    • Export Citation
  • Chen, M., W. Shi, P. Xie, V. B. S. Silva, V. E. Kousky, R. Wayne Higgins, and J. E. Janowiak, 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res., 113, D04110, https://doi.org/10.1029/2007JD009132.

    • Search Google Scholar
    • Export Citation
  • Chi, C.-H., R. W. McEwan, C.-T. Chang, C. Zheng, Z. Yang, J.-M. Chiang, and T.-C. Lin, 2015: Typhoon disturbance mediates elevational patterns of forest structure, but not species diversity, in humid monsoon Asia. Ecosystems, 18, 14101423, https://doi.org/10.1007/s10021-015-9908-3.

    • Search Google Scholar
    • Export Citation
  • Chien, F. C., and H. C. Kuo, 2011: On the extreme rainfall of Typhoon Morakot (2009). J. Geophys. Res., 116, D05104, https://doi.org/10.1029/2010JD015092.

    • Search Google Scholar
    • Export Citation
  • Cogan, J., I. Gratchev, and G. Wang, 2018: Rainfall-induced shallow landslides caused by ex-Tropical Cyclone Debbie, 31st March 2017. Landslides, 15, 12151221, https://doi.org/10.1007/s10346-018-0982-4.

    • Search Google Scholar
    • Export Citation
  • Colbert, A. J., and B. J. Soden, 2012: Climatological variations in North Atlantic tropical cyclone tracks. J. Climate, 25, 657673, https://doi.org/10.1175/JCLI-D-11-00034.1.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., M. J. Dickinson, and L. F. Bosart, 2009: The contribution of eastern North Pacific tropical cyclones to the rainfall climatology of the southwest United States. Mon. Wea. Rev., 137, 24152435, https://doi.org/10.1175/2009MWR2768.1.

    • Search Google Scholar
    • Export Citation
  • Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev., 87, 367374, https://doi.org/10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cry, G. W., 1967: Effects of tropical cyclone rainfall on the distribution of precipitation over the eastern and southern United States. United States Environmental Science Services Administration, ESSA Professional Papers, Vol. 1, 67 pp.

  • Czajkowski, J., G. Villarini, E. Michel-Kerjan, and J. A. Smith, 2013: Determining tropical cyclone inland flooding loss on a large scale through a new flood peak ratio-based methodology. Environ. Res. Lett., 8, 044056, https://doi.org/10.1088/1748-9326/8/4/044056.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., B. P. Hayden, D. Gay, W. L. Phillips, and G. V. Jones, 1997: The North Atlantic subtropical anticyclone. J. Climate, 10, 728744, https://doi.org/10.1175/1520-0442(1997)010<0728:TNASA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deng, Z., and Coauthors, 2015: Impacts of tropical cyclones and accompanying precipitation on infectious diarrhea in cyclone landing areas of Zhejiang Province, China. Int. J. Environ. Res. Public Health, 12, 10541068, https://doi.org/10.3390/ijerph120201054.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., and B. Kocher, 2000: Global tropical cyclone activity: A link to the North Atlantic Oscillation. Geophys. Res. Lett., 27, 129132, https://doi.org/10.1029/1999GL010893.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., K. Liu, and B. Kocher, 2000: Spatial variations in major U.S. hurricane activity: Statistics and a physical mechanism. J. Climate, 13, 22932305, https://doi.org/10.1175/1520-0442(2000)013<2293:SVIMUS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., B. H. Bossak, and X. F. Niu, 2001: Secular changes to the ENSO–U.S. hurricane relationship. Geophys. Res. Lett., 28, 41234126, https://doi.org/10.1029/2001GL013669.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., and L. Cid-Serrano, 2010: Secular and multidecadal warmings in the North Atlantic and their relationships with major hurricane activity. Int. J. Climatol., 30, 174184, https://doi.org/10.1002/JOC.1881.

    • Search Google Scholar
    • Export Citation
  • Ensor, L. A., and S. M. Robeson, 2008: Statistical characteristics of daily precipitation: Comparisons of gridded and point datasets. J. Appl. Meteor. Climatol., 47, 24682476, https://doi.org/10.1175/2008JAMC1757.1.

    • Search Google Scholar
    • Export Citation
  • Evans, J. L., and R. E. Hart, 2003: Objective indicators of the life cycle evolution of extratropical transition for Atlantic tropical cyclones. Mon. Wea. Rev., 131, 909925, https://doi.org/10.1175/1520-0493(2003)131<0909:OIOTLC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ficklin, D. L., J. T. Maxwell, S. L. Letsinger, and H. Gholizadeh, 2015: A climatic deconstruction of recent drought trends in the United States. Environ. Res. Lett., 10, 044009, https://doi.org/10.1088/1748-9326/10/4/044009.

    • Search Google Scholar
    • Export Citation
  • Fredrick, T., M. Ponnaiah, M. V. Murhekar, Y. Jayaraman, J. K. David, S. Vadivoo, and V. Joshua, 2015: Cholera outbreak linked with lack of safe water supply following a tropical cyclone in Pondicherry, India, 2012. J. Health Popul. Nutr., 33, 3138, https://www.ncbi.nlm.nih.gov/pubmed/25995719.

    • Search Google Scholar
    • Export Citation
  • Gandin, L. S., 1965: Objective Analysis of Meteorological Fields. Israel Program for Scientific Translations, 242 pp.

  • Glaser, P. H., B. C. S. Hansen, J. J. Donovan, T. J. Givnish, C. A. Stricker, and J. C. Volin, 2013: Holocene dynamics of the Florida Everglades with respect to climate, dustfall, and tropical storms. Proc. Natl. Acad. Sci. USA, 110, 17 21117 216, https://doi.org/10.1073/pnas.1222239110.

    • Search Google Scholar
    • Export Citation
  • Gocic, M., and S. Trajkovic, 2013: Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Global Planet. Change, 100, 172182, https://doi.org/10.1016/j.gloplacha.2012.10.014.

    • Search Google Scholar
    • Export Citation
  • Goulding, W., P. T. Moss, and C. A. McAlpine, 2016: Cascading effects of cyclones on the biodiversity of southwest Pacific islands. Biol. Conserv., 193, 143152, https://doi.org/10.1016/j.biocon.2015.11.022.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1984: Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb quasi-biennial oscillation influences. Mon. Wea. Rev., 112, 16491668, https://doi.org/10.1175/1520-0493(1984)112<1649:ASHFPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Guiney, J., 2007: How county/city emergency managers can assess vulnerability to hurricanes, develop response plans and mitigate risk. J. Bus. Continuity Emerg. Plann., 2, 92109.

    • Search Google Scholar
    • Export Citation
  • Hagen, A. B., D. Strahan-Sakoskie, and C. Luckett, 2012: A reanalysis of the 1944–53 Atlantic hurricane seasons—The first decade of aircraft reconnaissance. J. Climate, 25, 44414460, https://doi.org/10.1175/JCLI-D-11-00419.1.

    • Search Google Scholar
    • Export Citation
  • Hall, J. D., M. Xue, L. Ran, and L. M. Leslie, 2013: High-resolution modeling of Typhoon Morakot (2009): Vortex Rossby waves and their role in extreme precipitation over Taiwan. J. Atmos. Sci., 70, 163186, https://doi.org/10.1175/JAS-D-11-0338.1.

    • Search Google Scholar
    • Export Citation
  • Hart, R. E., and J. L. Evans, 2001: A climatology of the extratropical transition of Atlantic tropical cyclones. J. Climate, 14, 546564, https://doi.org/10.1175/1520-0442(2001)014<0546:ACOTET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hart, R. E., J. L. Evans, and C. Evans, 2006: Synoptic composites of the extratropical transition life cycle of North Atlantic tropical cyclones: Factors determining posttransition evolution. Mon. Wea. Rev., 134, 553578, https://doi.org/10.1175/MWR3082.1.

    • Search Google Scholar
    • Export Citation
  • Harville, S., 2009: Effects of Appalachian topography on precipitation from landfalling hurricanes. North Carolina State University, 315 pp.

  • Hernández Ayala, J. J., and C. J. Matyas, 2016: Tropical cyclone rainfall over Puerto Rico and its relations to environmental and storm-specific factors. Int. J. Climatol., 36, 22232237, https://doi.org/10.1002/joc.4490.

    • Search Google Scholar
    • Export Citation
  • Hewitson, B. C., and R. G. Crane, 2005: Gridded area-averaged daily precipitation via conditional interpolation. J. Climate, 18, 4157, https://doi.org/10.1175/JCLI3246.1.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., and V. E. Kousky, 2013: Changes in observed daily precipitation over the United States between 1950–79 and 1980–2009. J. Hydrometeor., 14, 105121, https://doi.org/10.1175/JHM-D-12-062.1.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., E. Yarosh, and W. Shi, 2000a: CPC Unified Gauge-Based Analysis of Daily Precipitation over CONUS. NCEP/CPC and ESRL/Physical Sciences Division, accessed 14 March 2017, https://www.esrl.noaa.gov/psd/data/gridded/data.unified.daily.conus.html.

  • Higgins, R. W., W. Shi, E. Yarosh, and R. Joyce, 2000b: Improved United States Precipitation Quality Control System and Analysis. Climate Prediction Center Atlas No. 7, accessed 14 March 2017, https://www.cpc.ncep.noaa.gov/research_papers/ncep_cpc_atlas/7/.

  • Higgins, R. W., V. B. S. Silva, W. Shi, and J. Larson, 2007: Relationships between climate variability and fluctuations in daily precipitation over the United States. J. Climate, 20, 35613579, https://doi.org/10.1175/JCLI4196.1.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., V. B. S. Silva, V. E. Kousky, and W. Shi, 2008: Comparison of daily precipitation statistics for the United States in observations and in the NCEP Climate Forecast System. J. Climate, 21, 59936014, https://doi.org/10.1175/2008JCLI2339.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., and E. J. Zipser, 2010: Contribution of tropical cyclones to the global precipitation from eight seasons of TRMM data: Regional, seasonal, and interannual variations. J. Climate, 23, 15261543, https://doi.org/10.1175/2009JCLI3303.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., and E. M. Ramirez, 2013: Necessary conditions for tropical cyclone rapid intensification as derived from 11 years of TRMM data. J. Climate, 26, 64596470, https://doi.org/10.1175/JCLI-D-12-00432.1.

    • Search Google Scholar
    • Export Citation
  • Kam, J., J. Sheffield, and E. F. Wood, 2014: A multiscale analysis of drought and pluvial mechanisms for the southeastern United States. J. Geophys. Res., 119, 73487367, https://doi.org/10.1002/2014JD021453.

    • Search Google Scholar
    • Export Citation
  • Katz, R. W., M. B. Parlange, and C. Tebaldi, 2003: Stochastic modeling of the effects of large-scale circulation on daily weather in the southeastern U.S. Climatic Change, 60, 189216, https://doi.org/10.1023/A:1026054330406.

    • Search Google Scholar
    • Export Citation
  • Khouakhi, A., G. Villarini, and G. A. Vecchi, 2017: Contribution of tropical cyclones to rainfall at the global scale. J. Climate, 30, 359372, https://doi.org/10.1175/JCLI-D-16-0298.1.

    • Search Google Scholar
    • Export Citation
  • Kim, S., Y. Shin, H. Kim, H. Pak, and J. Ha, 2013: Impacts of typhoon and heavy rain disasters on mortality and infectious diarrhea hospitalization in South Korea. Int. J. Environ. Health Res., 23, 365376, https://doi.org/10.1080/09603123.2012.733940.

    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., and W. M. Gray, 2008: Multidecadal variability in North Atlantic tropical cyclone activity. J. Climate, 21, 39293935, https://doi.org/10.1175/2008JCLI2162.1.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS) project: Unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363376, https://doi.org/10.1175/2009BAMS2755.1.

    • Search Google Scholar
    • Export Citation
  • Knapp, P. A., J. T. Maxwell, and P. T. Soulé, 2016: Tropical cyclone rainfall variability in coastal North Carolina derived from longleaf pine (Pinus palustris Mill.): AD 1771–2014. Climatic Change, https://doi.org/10.1007/s10584-015-1560-6.

    • Search Google Scholar
    • Export Citation
  • Knight, D. B., and R. E. Davis, 2007: Climatology of tropical cyclone rainfall in the southeastern United States. Phys. Geogr., 28, 126147, https://doi.org/10.2747/0272-3646.28.2.126.

    • Search Google Scholar
    • Export Citation
  • Knight, D. B., and R. E. Davis, 2009: Contribution of tropical cyclones to extreme rainfall events in the southeastern United States. J. Geophys. Res., 114, D23102, https://doi.org/10.1029/2009JD012511.

    • Search Google Scholar
    • Export Citation
  • Konrad, C. E., and L. B. Perry, 2010: Relationships between tropical cyclones and heavy rainfall in the Carolina region of the USA. Int. J. Climatol., 30, 522534, https://doi.org/10.1002/JOC.1894.

    • Search Google Scholar
    • Export Citation
  • Konrad, C. E., M. F. Meaux, and D. A. Meaux, 2002: Relationships between tropical cyclone attributes and precipitation totals: Considerations of scale. Int. J. Climatol., 22, 237247, https://doi.org/10.1002/joc.721.

    • Search Google Scholar
    • Export Citation
  • Kuo, Y. S., Y. J. Tsai, Y. S. Chen, C. L. Shieh, K. Miyamoto, and T. Itoh, 2013: Movement of deep-seated rainfall-induced landslide at Hsiaolin Village during Typhoon Morakot. Landslides, 10, 191202, https://doi.org/10.1007/s10346-012-0315-y.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, https://doi.org/10.1175/MWR-D-12-00254.1.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and Coauthors, 2004: The Atlantic Hurricane Database Re-Analysis Project: Documentation for 1851–1910 alterations and additions to the HURDAT database. Hurricanes and Typhoons: Past, Present, and Future, R. J. Murnane and K. Liu, Eds., Columbia University Press, 178–221.

  • Landsea, C. W., A. Hagen, W. Bredemeyer, C. Carrasco, D. A. Glenn, A. Santiago, D. Strahan-Sakoskie, and M. Dickinson, 2014: A reanalysis of the 1931–43 Atlantic hurricane database. J. Climate, 27, 60936118, https://doi.org/10.1175/JCLI-D-13-00503.1.

    • Search Google Scholar
    • Export Citation
  • Li, J., and J. X. L. Wang, 2003: A new North Atlantic oscillation index and its variability. Adv. Atmos. Sci., 20, 661676, https://doi.org/10.1007/BF02915394.

    • Search Google Scholar
    • Export Citation
  • Li, L., W. Li, and Y. Kushnir, 2012: Variation of the North Atlantic subtropical high western ridge and its implication to southeastern US summer precipitation. Climate Dyn., 39, 14011412, https://doi.org/10.1007/s00382-011-1214-y.

    • Search Google Scholar
    • Export Citation
  • Li, W., L. Li, R. Fu, Y. Deng, and H. Wang, 2011: Changes to the North Atlantic subtropical high and its role in the intensification of summer rainfall variability in the southeastern United States. J. Climate, 24, 14991506, https://doi.org/10.1175/2010JCLI3829.1.

    • Search Google Scholar
    • Export Citation
  • Lin, C. Y., N. C. Chiu, and C. M. Lee, 2012: Leptospirosis after typhoon. Amer. J. Trop. Med. Hyg., 86, 187188, https://doi.org/10.4269/ajtmh.2012.11-0518.

    • Search Google Scholar
    • Export Citation
  • Lin, G.-W., H. Chen, N. Hovius, M.-J. Horng, S. Dadson, P. Meunier, and M. Lines, 2008: Effects of earthquake and cyclone sequencing on landsliding and fluvial sediment transfer in a mountain catchment. Earth Surf. Processes Landforms, 33, 13541373, https://doi.org/10.1002/esp.1716.

    • Search Google Scholar
    • Export Citation
  • Liu, K., and M. L. Fearn, 2000: Reconstruction of prehistoric landfall frequencies of catastrophic hurricanes in northwestern Florida from lake sediment records. Quat. Res., 54, 238245, https://doi.org/10.1006/qres.2000.2166.

    • Search Google Scholar
    • Export Citation
  • Liu, L., Y.-L. Lin, and S.-H. Chen, 2016: Effects of landfall location and approach angle of an idealized tropical cyclone over a long mountain range. Front. Earth Sci., 4, 14, https://doi.org/10.3389/feart.2016.00014.

    • Search Google Scholar
    • Export Citation
  • Lonfat, M., F. D. Marks, and S. S. Chen, 2004: Precipitation distribution in tropical cyclones using the Tropical Rainfall Measuring Mission (TRMM) microwave imager: A global perspective. Mon. Wea. Rev., 132, 16451660, https://doi.org/10.1175/1520-0493(2004)132<1645:PDITCU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Luitel, B., G. Villarini, and G. A. Vecchi, 2018: Verification of the skill of numerical weather prediction models in forecasting rainfall from U.S. landfalling tropical cyclones. J. Hydrol., 556, 10261037, https://doi.org/10.1016/j.jhydrol.2016.09.019.

    • Search Google Scholar
    • Export Citation
  • Matyas, C. J., 2007: Quantifying the shapes of U.S. landfalling tropical cyclone rain shields. Prof. Geogr., 59, 158172, https://doi.org/10.1111/j.1467-9272.2007.00604.x.

    • Search Google Scholar
    • Export Citation
  • Matyas, C. J., 2010: Associations between the size of hurricane rain fields at landfall and their surrounding environments. Meteor. Atmos. Phys., 106, 135148, https://doi.org/10.1007/s00703-009-0056-1.

    • Search Google Scholar
    • Export Citation
  • Matyas, C. J., 2013: Processes influencing rain-field growth and decay after tropical cyclone landfall in the United States. J. Appl. Meteor. Climatol., 52, 10851096, https://doi.org/10.1175/JAMC-D-12-0153.1.

    • Search Google Scholar
    • Export Citation
  • Matyas, C. J., 2017: Comparing the spatial patterns of rainfall and atmospheric moisture among tropical cyclones having a track similar to Hurricane Irene (2011). Atmosphere, 8, 165, https://doi.org/10.3390/ATMOS8090165.

    • Search Google Scholar
    • Export Citation
  • Maxwell, J. T., P. T. Soulé, J. T. Ortegren, and P. A. Knapp, 2012: Drought-busting tropical cyclones in the southeastern Atlantic United States: 1950–2008. Ann. Assoc. Amer. Geogr., 102, 259275, https://doi.org/10.1080/00045608.2011.596377.

    • Search Google Scholar
    • Export Citation
  • Maxwell, J. T., J. T. Ortegren, P. A. Knapp, and P. T. Soulé, 2013: Tropical cyclones and drought amelioration in the Gulf and southeastern coastal United States. J. Climate, 26, 84408452, https://doi.org/10.1175/JCLI-D-12-00824.1.

    • Search Google Scholar
    • Export Citation
  • Maxwell, J. T., P. A. Knapp, J. T. Ortegren, D. L. Ficklin, and P. T. Soulé, 2017: Changes in the mechanisms causing rapid drought cessation in the southeastern United States. Geophys. Res. Lett., 44, 12 47612 483, https://doi.org/10.1002/2017GL076261.

    • Search Google Scholar
    • Export Citation
  • McCloskey, T. A., T. A. Bianchette, and K.-B. Liu, 2013: Track patterns of landfalling and coastal tropical cyclones in the Atlantic Basin, their relationship with the North Atlantic Oscillation (NAO), and the potential effect of global warming. Amer. J. Climate Change, 2, 1222, https://doi.org/10.4236/ajcc.2013.23A002.

    • Search Google Scholar
    • Export Citation
  • Mondoro, A., and D. M. Frangopol, 2018: Risk-based cost-benefit analysis for the retrofit of bridges exposed to extreme hydrologic events considering multiple failure modes. Eng. Struct., 159, 310319, https://doi.org/10.1016/j.engstruct.2017.12.029.

    • Search Google Scholar
    • Export Citation
  • Nogueira, R. C., and B. D. Keim, 2010: Annual volume and area variations in tropical cyclone rainfall over the eastern United States. J. Climate, 23, 43634374, https://doi.org/10.1175/2010JCLI3443.1.

    • Search Google Scholar
    • Export Citation
  • Nogueira, R. C., and B. D. Keim, 2011: Contributions of Atlantic tropical cyclones to monthly and seasonal rainfall in the eastern United States 1960–2007. Theor. Appl. Climatol., 103, 213227, https://doi.org/10.1007/s00704-010-0292-9.

    • Search Google Scholar
    • Export Citation
  • Nogueira, R. C., B. D. Keim, D. P. Brown, and K. D. Robbins, 2013: Variability of rainfall from tropical cyclones in the eastern USA and its association to the AMO and ENSO. Theor. Appl. Climatol., 112, 273283, https://doi.org/10.1007/s00704-012-0722-y.

    • Search Google Scholar
    • Export Citation
  • Ortegren, J. T., and J. T. Maxwell, 2014: Spatiotemporal patterns of drought/tropical cyclone co-occurrence in the Southeastern USA: Linkages to North Atlantic climate variability. Geogr. Compass, 8, 540559, https://doi.org/10.1111/gec3.12148.

    • Search Google Scholar
    • Export Citation
  • Ortegren, J. T., P. A. Knapp, J. T. Maxwell, W. P. Tyminski, and P. T. Soulé, 2011: Ocean–atmosphere influences on low-frequency warm-season drought variability in the Gulf Coast and southeastern United States. J. Appl. Meteor. Climatol., 50, 11771186, https://doi.org/10.1175/2010JAMC2566.1.

    • Search Google Scholar
    • Export Citation
  • Prat, O. P., and B. R. Nelson, 2013a: Precipitation contribution of tropical cyclones in the southeastern United States from 1998 to 2009 using TRMM satellite data. J. Climate, 26, 10471062, https://doi.org/10.1175/JCLI-D-11-00736.1.

    • Search Google Scholar
    • Export Citation
  • Prat, O. P., and B. R. Nelson, 2013b: Mapping the world’s tropical cyclone rainfall contribution over land using the TRMM multi-satellite precipitation analysis. Water Resour. Res., 49, 72367254, https://doi.org/10.1002/wrcr.20527.

    • Search Google Scholar
    • Export Citation
  • Rios Gaona, M. F., G. Villarini, W. Zhang, and G. A. Vecchi, 2018: The added value of IMERG in characterizing rainfall in tropical cyclones. Atmos. Res., 209, 95102, https://doi.org/10.1016/j.atmosres.2018.03.008.

    • Search Google Scholar
    • Export Citation
  • Risser, M. D., and M. F. Wehner, 2017: Attributable human-induced changes in the likelihood and magnitude of the observed extreme precipitation during Hurricane Harvey. Geophys. Res. Lett., 44, 12 45712 464, https://doi.org/10.1002/2017GL075888.

    • Search Google Scholar
    • Export Citation
  • Rodgers, E. B., and H. F. Pierce, 1995: A satellite observation study of precipitation characteristics in western North Pacific tropical cyclones. J. Appl. Meteor. Climatol., 34, 25872599, https://doi.org/10.1175/1520-0450(1995)034<2587:ASOSOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rodgers, E. B., S. W. Chang, and H. F. Pierce, 1994: A satellite observational and numerical study of precipitation characteristics in western North Atlantic tropical cyclones. J. Appl. Meteor. Climatol., 33, 129139, https://doi.org/10.1175/1520-0450(1994)033<0129:ASOANS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rodgers, E. B., R. F. Adler, and H. F. Pierce, 2001: Contribution of tropical cyclones to the North Atlantic climatological rainfall as observed from satellites. J. Appl. Meteor. Climatol., 40, 17851800, https://doi.org/10.1175/1520-0450(2001)040<1785:COTCTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rostom, R., and Y.-L. Lin, 2015: Control parameters for track continuity of cyclones passing over the south-central Appalachian Mountains. Wea. Forecasting, 30, 14291449, https://doi.org/10.1175/WAF-D-14-00080.1.

    • Search Google Scholar
    • Export Citation
  • Sahsamanoglou, H. S., 1990: A contribution to the study of action centres in the North Atlantic. Int. J. Climatol., 10, 247261, https://doi.org/10.1002/joc.3370100303.

    • Search Google Scholar
    • Export Citation
  • Schwarz, F. K., 1970: The unprecedented rains in Virginia associated with the remnants of Hurricane Camille. Mon. Wea. Rev., 98, 851859, https://doi.org/10.1175/1520-0493(1970)098<0851:TURIVA>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shepard, D., 1968: A two-dimensional interpolation function for irregularly-spaced data. Proceedings of the 1968 23rd ACM National Conference, ACM Press, 517–524, http://portal.acm.org/citation.cfm?doid=800186.810616.

  • Shepherd, J. M., A. Grundstein, and T. L. Mote, 2007: Quantifying the contribution of tropical cyclones to extreme rainfall along the coastal southeastern United States. Geophys. Res. Lett., 34, L23810, https://doi.org/10.1029/2007GL031694.

    • Search Google Scholar
    • Export Citation
  • Smith, C. A., and P. Sardeshmukh, 2000: The effect of ENSO on the intraseasonal variance of surface temperature in winter. Int. J. Climatol., 20, 15431557, https://doi.org/10.1002/1097-0088(20001115)20:13<1543::AID-JOC579>3.0.CO;2-A.

    • Search Google Scholar
    • Export Citation
  • Smith, S. R., J. Brolley, J. J. O’Brien, and C. A. Tartaglione, 2007: ENSO’s impact on regional U.S. hurricane activity. J. Climate, 20, 14041414, https://doi.org/10.1175/JCLI4063.1.

    • Search Google Scholar
    • Export Citation
  • Stahle, D. W., and M. K. Cleaveland, 1992: Reconstruction and analysis of spring rainfall over the southeastern U.S. for the past 1000 years. Bull. Amer. Meteor. Soc., 73, 19471961, https://doi.org/10.1175/1520-0477(1992)073<1947:RAAOSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tabari, H., B. S. Somee, and M. R. Zadeh, 2011: Testing for long-term trends in climatic variables in Iran. Atmos. Res., 100, 132140, https://doi.org/10.1016/j.atmosres.2011.01.005.

    • Search Google Scholar
    • Export Citation
  • Tang, J., and C. J. Matyas, 2018: A nowcasting model for tropical cyclone precipitation regions based on the TREC motion vector retrieval with a semi-Lagrangian scheme for Doppler weather radar. Atmosphere, 9, 200, https://doi.org/10.3390/atmos9050200.

    • Search Google Scholar
    • Export Citation
  • Thyng, K. M., C. A. Greene, R. D. Hetland, H. M. Zimmerle, and S. F. DiMarco, 2016: True colors of oceanography: Guidelines for effective and accurate colormap selection. Oceanography, 29, 913, https://doi.org/10.5670/oceanog.2016.66.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and C. Snyder, 2012: Uncertainty of tropical cyclone best-track information. Wea. Forecasting, 27, 715729, https://doi.org/10.1175/WAF-D-11-00085.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., L. Cheng, P. Jacobs, Y. Zhang, and J. Fasullo, 2018: Hurricane Harvey links to ocean heat content and climate change adaptation. Earth’s Future, 6, 730744, https://doi.org/10.1029/2018EF000825.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and T. R. Knutson, 2011: Estimating annual numbers of Atlantic hurricanes missing from the HURDAT database (1878–1965) using ship track density. J. Climate, 24, 17361746, https://doi.org/10.1175/2010JCLI3810.1.

    • Search Google Scholar
    • Export Citation
  • Vega, A. J., and M. S. Binkley, 1993: Tropical cyclone formation in the North Atlantic Basin, 1960–1989. Climate Res., 3, 221232, https://doi.org/10.3354/cr003221.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., J. A. Smith, M. L. Baeck, T. Marchok, and G. A. Vecchi, 2011: Characterization of rainfall distribution and flooding associated with U.S. landfalling tropical cyclones: Analyses of Hurricanes Frances, Ivan, and Jeanne (2004). J. Geophys. Res., 116, D23116, https://doi.org/10.1029/2011JD016175.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., D. A. Lavers, E. Scoccimarro, M. Zhao, M. F. Wehner, G. A. Vecchi, T. R. Knutson, and K. A. Reed, 2014: Sensitivity of tropical cyclone rainfall to idealized global-scale forcings. J. Climate, 27, 46224641, https://doi.org/10.1175/JCLI-D-13-00780.1.

    • Search Google Scholar
    • Export Citation
  • Walls, S., W. Barichivich, and M. Brown, 2013: Drought, deluge and declines: The impact of precipitation extremes on amphibians in a changing climate. Biology, 2, 399418, https://doi.org/10.3390/BIOLOGY2010399.

    • Search Google Scholar
    • Export Citation
  • Wang, C., S. K. Lee, and D. B. Enfield, 2008: Atlantic warm pool acting as a link between Atlantic Multidecadal Oscillation and Atlantic tropical cyclone activity. Geochem. Geophys. Geosyst., 9, Q05V03, https://doi.org/10.1029/2007GC001809.

    • Search Google Scholar
    • Export Citation
  • Wooten, R. M., K. A. Gillon, A. C. Witt, R. S. Latham, T. J. Douglas, J. B. Bauer, S. J. Fuemmeler, and L. G. Lee, 2008: Geologic, geomorphic, and meteorological aspects of debris flows triggered by Hurricanes Frances and Ivan during September 2004 in the southern Appalachian Mountains of Macon County, North Carolina (southeastern USA). Landslides, 5, 3144, https://doi.org/10.1007/s10346-007-0109-9.

    • Search Google Scholar
    • Export Citation
  • Xie, P., M. Chen, S. Yang, A. Yatagai, T. Hayasaka, Y. Fukushima, and C. Liu, 2007: A gauge-based analysis of daily precipitation over East Asia. J. Hydrometeor., 8, 607626, https://doi.org/10.1175/JHM583.1.

    • Search Google Scholar
    • Export Citation
  • Xu, W., H. Jiang, and X. Kang, 2014: Rainfall asymmetries of tropical cyclones prior to, during, and after making landfall in south China and southeast United States. Atmos. Res., 139, 1826, https://doi.org/10.1016/j.atmosres.2013.12.015.

    • Search Google Scholar
    • Export Citation
  • Yang, K., and Coauthors, 2019: Incorporating inland flooding into hurricane evacuation decision support modeling. Nat. Hazards, 96, 857878, https://doi.org/10.1007/S11069-019-03573-9.

    • Search Google Scholar
    • Export Citation
  • Yang, R., A. Fairley, and W. Park, 2018: The centennial variation of El Niño impact on Atlantic tropical cyclones. Earth Interact., 22, 115, https://doi.org/10.1175/EI-D-17-0006.1.

    • Search Google Scholar
    • Export Citation
  • Yanites, B. J., and Coauthors, 2018: Landslides control the spatial and temporal variations of channel width in southern Taiwan: implications for landscape evolution and cascading hazards in steep, tectonically active landscapes. Earth Surf. Processes Landforms, 43, 17821797, https://doi.org/10.1002/esp.4353.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., G. Villarini, G. A. Vecchi, and J. A. Smith, 2018: Urbanization exacerbated the rainfall and flooding caused by hurricane Harvey in Houston. Nature, 563, 384388, https://doi.org/10.1038/s41586-018-0676-z.

    • Search Google Scholar
    • Export Citation
  • Zheng, J., W. Han, B. Jiang, W. Ma, and Y. Zhang, 2017: Infectious diseases and tropical cyclones in southeast China. Int. J. Environ. Res. Public Health, 14, 494, https://doi.org/10.3390/ijerph14050494.

    • Search Google Scholar
    • Export Citation
  • Zhou, Y., and C. J. Matyas, 2017: Spatial characteristics of storm-total rainfall swaths associated with tropical cyclones over the eastern United States. Int. J. Climatol., 37, 557569, https://doi.org/10.1002/joc.5021.

    • Search Google Scholar
    • Export Citation
  • Zhu, L., and S. M. Quiring, 2017: An extraction method for long-term tropical cyclone precipitation from daily rain gauges. J. Hydrometeor., 18, 25592576, https://doi.org/10.1175/JHM-D-16-0291.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, T., and D.-L. Zhang, 2006: Numerical simulation of Hurricane Bonnie (1998). Part II: sensitivity to varying cloud microphysical processes. J. Atmos. Sci., 63, 109126, https://doi.org/10.1175/JAS3599.1.

    • Search Google Scholar
    • Export Citation
  • Zick, S. E., and C. J. Matyas, 2015: Tropical cyclones in the North American Regional Reanalysis: An assessment of spatial biases in location, intensity, and structure. J. Geophys. Res., 120, 16511669, https://doi.org/10.1002/2014JD022417.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 7 7 7
Full Text Views 0 0 0
PDF Downloads 0 0 0

Spatiotemporal Variability of Tropical Cyclone Precipitation Using a High-Resolution, Gridded (0.25° × 0.25°) Dataset for the Eastern United States, 1948–2015

View More View Less
  • 1 Department of Geography, and Department of Earth and Atmospheric Sciences, Indiana University, Bloomington, Indiana
  • 2 Department of Geography, Indiana University, Bloomington, Indiana
  • 3 Department of Earth and Environmental Sciences, University of West Florida, Pensacola, Florida
  • 4 Department of Geography and Planning, Appalachian State University, Boone, North Carolina
  • 5 Department of Geography, Environment, and Sustainability, University of North Carolina at Greensboro, Greensboro, North Carolina
© Get Permissions
Restricted access

Abstract

Tropical cyclones (TCs) are an important source of precipitation for much of the eastern United States. However, our understanding of the spatiotemporal variability of tropical cyclone precipitation (TCP) and the connections to large-scale atmospheric circulation is limited by irregularly distributed rain gauges and short records of satellite measurements. To address this, we developed a new gridded (0.25° × 0.25°) publicly available dataset of TCP (1948–2015; Tropical Cyclone Precipitation Dataset, or TCPDat) using TC tracks to identify TCP within an existing gridded precipitation dataset. TCPDat was used to characterize total June–November TCP and percentage contribution to total June–November precipitation. TCP totals and contributions had maxima on the Louisiana, North Carolina, and Texas coasts, substantially decreasing farther inland at rates of approximately 6.2–6.7 mm km−1. Few statistically significant trends were discovered in either TCP totals or percentage contribution. TCP is positively related to an index of the position and strength of the western flank of the North Atlantic subtropical high (NASH), with the strongest correlations concentrated in the southeastern United States. Weaker inverse correlations between TCP and El Niño–Southern Oscillation are seen throughout the study site. Ultimately, spatial variations of TCP are more closely linked to variations in the NASH flank position or strength than to the ENSO index. The TCP dataset developed in this study is an important step in understanding hurricane–climate interactions and the impacts of TCs on communities, water resources, and ecosystems in the eastern United States.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0885.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Joshua C. Bregy, jbregy@indiana.edu

Abstract

Tropical cyclones (TCs) are an important source of precipitation for much of the eastern United States. However, our understanding of the spatiotemporal variability of tropical cyclone precipitation (TCP) and the connections to large-scale atmospheric circulation is limited by irregularly distributed rain gauges and short records of satellite measurements. To address this, we developed a new gridded (0.25° × 0.25°) publicly available dataset of TCP (1948–2015; Tropical Cyclone Precipitation Dataset, or TCPDat) using TC tracks to identify TCP within an existing gridded precipitation dataset. TCPDat was used to characterize total June–November TCP and percentage contribution to total June–November precipitation. TCP totals and contributions had maxima on the Louisiana, North Carolina, and Texas coasts, substantially decreasing farther inland at rates of approximately 6.2–6.7 mm km−1. Few statistically significant trends were discovered in either TCP totals or percentage contribution. TCP is positively related to an index of the position and strength of the western flank of the North Atlantic subtropical high (NASH), with the strongest correlations concentrated in the southeastern United States. Weaker inverse correlations between TCP and El Niño–Southern Oscillation are seen throughout the study site. Ultimately, spatial variations of TCP are more closely linked to variations in the NASH flank position or strength than to the ENSO index. The TCP dataset developed in this study is an important step in understanding hurricane–climate interactions and the impacts of TCs on communities, water resources, and ecosystems in the eastern United States.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0885.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Joshua C. Bregy, jbregy@indiana.edu

Supplementary Materials

    • Supplemental Materials (PDF 5.52 MB)
Save