• Allan, R., and T. Ansell, 2006: A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J. Climate, 19, 58165842, https://doi.org/10.1175/JCLI3937.1.

    • Search Google Scholar
    • Export Citation
  • Atkinson, B. W., 1981: Mesoscale Atmospheric Circulation. Academic Press, 495 pp.

  • Azorin-Molina, C., and Coauthors, 2014: Homogenization and assessment of observed near-surface wind speed trends over Spain and Portugal, 1961-2011. J. Climate, 27, 36923712, https://doi.org/10.1175/JCLI-D-13-00652.1.

    • Search Google Scholar
    • Export Citation
  • Azorin-Molina, C., S. M. Vicente-Serrano, T. R. McVicar, J. Revuelto, S. Jerez, and J. I. López-Moreno, 2017: Assessing the impact of measurement time interval when calculating wind speed means and trends under the stilling phenomenon. Int. J. Climatol., 37, 480492, https://doi.org/10.1002/joc.4720.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Befort, D. J., S. Wild, T. Kruschke, U. Ulbrich, and G. C. Leckebusch, 2016: Different long-term trends of extra-tropical cyclones and windstorms in ERA-20C and NOAA-20CR reanalyses. Atmos. Sci. Lett., 17, 586595, https://doi.org/10.1002/asl.694.

    • Search Google Scholar
    • Export Citation
  • Bianco, L., B. Tomassetti, E. Coppola, A. Fracassi, M. Verdecchia, and G. Visconti, 2006: Thermally driven circulation in a region of complex topography: Comparison of wind-profiling radar measurements and MM5 numerical predictions. Ann. Geophys., 24, 15371549, https://doi.org/10.5194/angeo-24-1537-2006.

    • Search Google Scholar
    • Export Citation
  • Brinckmann, S., S. Krähenmann, and P. Bissolli, 2016: High-resolution daily gridded data sets of air temperature and wind speed for Europe. Earth Syst. Sci. Data, 8, 491516, https://doi.org/10.5194/essd-8-491-2016.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., 1986: El Niño. Ann. Rev. Earth Planet. Sci., 14, 4370, https://doi.org/10.1146/annurev.ea.14.050186.000355.

  • Cheng, C. S., 2014: Evidence from the historical record to support projection of future wind regimes: An application to Canada. Atmos.–Ocean, 52, 232241, https://doi.org/10.1080/07055900.2014.902803.

    • Search Google Scholar
    • Export Citation
  • CISL RDA, 1979: Daily Northern Hemisphere sea level pressure grids, continuing from 1899. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, accessed 6 May 2015, http://rda.ucar.edu/datasets/ds010.0/.

  • CRIEPI and JMA, 2007: Japanese 25-year Reanalysis Project. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, accessed 22 May 2015, http://rda.ucar.edu/datasets/ds625.0/.

  • CRIEPI and JMA, 2008: Japanese 25-year Reanalysis Project, monthly means. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, accessed 24 May 2015, http://rda.ucar.edu/datasets/ds625.1/.

  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, https://doi.org/10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2015: NOAA/CIRES Twentieth Century Global Reanalysis Version 2c. Updated yearly, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, accessed 4 June 2015, https://doi.org/10.5065/D6N877TW.

  • Conrad, C. T., 2009: Severe and Hazardous Weather in Canada: The Geography of Extreme Events. Oxford University Press, 45–53.

  • Correia, J., A. Bastos, M. Brito, and R. Trigo, 2017: The influence of the main large-scale circulation patterns on wind power production in Portugal. Renew. Energy, 102, 214223, https://doi.org/10.1016/j.renene.2016.10.002.

    • Search Google Scholar
    • Export Citation
  • Cram, T. A., and Coauthors, 2015: The International Surface Pressure Databank version 2. Geosci. Data J., 2, 3146, https://doi.org/10.1002/gdj3.25.

    • Search Google Scholar
    • Export Citation
  • Culver, A. M. R., and A. H. Monahan, 2013: The statistical predictability of surface winds over western and central Canada. J. Climate, 26, 83058322, https://doi.org/10.1175/JCLI-D-12-00425.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Ebita, A., and Coauthors, 2011: The Japanese 55-year Reanalysis “JRA-55”: An interim report. SOLA, 7, 149152, https://doi.org/10.2151/sola.2011-038.

    • Search Google Scholar
    • Export Citation
  • Farquhar, G., and M. Roderick, 2005: Worldwide changes in evaporative demand. Water and the Environment, Scripta Varia 108, Vatican City, Pontifical Academy of Sciences, 81103, http://www.pas.va/content/dam/accademia/pdf/sv108/sv108-farquhar.pdf.

  • Ferguson, C. R., and G. Villarini, 2014: An evaluation of the statistical homogeneity of the Twentieth Century Reanalysis. Climate Dyn., 42, 28412866, https://doi.org/10.1007/s00382-013-1996-1.

    • Search Google Scholar
    • Export Citation
  • Fowler, H., S. Blenkinsop, and C. Tebaldi, 2007: Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol., 27, 15471578, https://doi.org/10.1002/joc.1556.

    • Search Google Scholar
    • Export Citation
  • García-Bustamante, E., J. F. González-Rouco, J. Navarro, E. Xoplaki, P. a. Jiménez, and J. P. Montávez, 2012: North Atlantic atmospheric circulation and surface wind in the Northeast of the Iberian Peninsula: Uncertainty and long term downscaled variability. Climate Dyn., 38, 141160, https://doi.org/10.1007/s00382-010-0969-x.

    • Search Google Scholar
    • Export Citation
  • García-Bustamante, E., and Coauthors, 2013: Relationship between wind power production and North Atlantic atmospheric circulation over the northeastern Iberian Peninsula. Climate Dyn., 40, 935949, https://doi.org/10.1007/s00382-012-1451-8.

    • Search Google Scholar
    • Export Citation
  • González-Rouco, J. F., H. Heyen, E. Zorita, and F. Valero, 2000: Agreement between observed rainfall trends and climate change simulations in the southwest of Europe. J. Climate, 13, 30573065, https://doi.org/10.1175/1520-0442(2000)013<3057:ABORTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hart, R. E., and J. L. Evans, 2001: A climatology of the extratropical transition of Atlantic tropical cyclones. J. Climate, 14, 546564, https://doi.org/10.1175/1520-0442(2001)014<0546:ACOTET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. J., and Coauthors, 2013: Observations: Atmosphere and surface. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 159–254.

  • Hersbach, H., P. Poli, and D. Dee, 2015: The observation feedback archive for the ICOADS and ISPD data sets (ERA-20C). ERA Rep. Series 18, ECMWF, 31 pp., https://www.ecmwf.int/node/9871.

  • Hertig, E., A. Paxian, G. Vogt, S. Seubert, H. Paeth, and J. Jacobeit, 2012: Statistical and dynamical downscaling assessments of precipitation extremes in the Mediterranean area. Meteor. Z., 21, 6177, https://doi.org/10.1127/0941-2948/2012/0271.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269, 676679, https://doi.org/10.1126/science.269.5224.676.

    • Search Google Scholar
    • Export Citation
  • Huth, R., 2002: Statistical downscaling of daily temperature in central Europe. J. Climate, 15, 17311742, https://doi.org/10.1175/1520-0442(2002)015<1731:SDODTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. F. González-Rouco, J. P. Montávez, and E. García-Bustamante, 2008: Climatology of wind patterns in the northeast of the Iberian Peninsula. Int. J. Climatol., https://doi.org/10.1002/joc.1705.

    • Search Google Scholar
    • Export Citation
  • JMA, 2013: JRA-55: Japanese 55-year Reanalysis, monthly means and variances. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, accessed 23 April 2015, https://doi.org/10.5065/D60G3H5B.

  • Kaas, E., T.-S. Li, and T. Schmith, 1996: Statistical hindcast of wind climatology in the North Atlantic and northwestern European region. Climate Res., 7, 97110, https://doi.org/10.3354/cr007097.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP-DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, https://doi.org/10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Khanduri, A., and G. Morrow, 2003: Vulnerability of buildings to windstorms and insurance loss estimation. J. Wind Eng. Ind. Aerodyn., 91, 455467, https://doi.org/10.1016/S0167-6105(02)00408-7.

    • Search Google Scholar
    • Export Citation
  • Klink, K., 1999: Climatological mean and interannual variance of United States surface wind speed, direction and velocity. Int. J. Climatol., 19, 471488, https://doi.org/10.1002/(SICI)1097-0088(199904)19:5<471::AID-JOC367>3.0.CO;2-X.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, C., H. Endo, Y. Ota, S. Kobayashi, H. Onoda, Y. Harada, K. Onogi, and H. Kamahori, 2014: Preliminary results of the JRA-55C, an atmospheric reanalysis assimilating conventional observations only. SOLA, 10, 7882, https://doi.org/10.2151/sola.2014-016.

    • Search Google Scholar
    • Export Citation
  • Laloyaux, P., M. Balmaseda, D. Dee, K. Mogensen, and P. Janssen, 2016: A coupled data assimilation system for climate reanalysis. Quart. J. Roy. Meteor. Soc., 142, 6578, https://doi.org/10.1002/qj.2629.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1956: Empirical orthogonal functions and statistical weather prediction. Sci. Rep. 1, Dept. of Meteorology, Massachusetts Institute of Technology, 52 pp.

  • Lucio-Eceiza, E. E., J. F. González-Rouco, J. Navarro, and H. Beltrami, 2018a: Quality Control of surface wind observations in northeastern North America. Part I: Data management issues. J. Atmos. Oceanic Technol., 35, 163182, https://doi.org/10.1175/JTECH-D-16-0204.1.

    • Search Google Scholar
    • Export Citation
  • Lucio-Eceiza, E. E., J. F. González-Rouco, J. Navarro, H. Beltrami, and J. Conte, 2018b: Quality control of surface wind observations in northeastern North America. Part II: Measurement errors. J. Atmos. Oceanic Technol., 35, 183205, https://doi.org/10.1175/JTECH-D-16-0205.1.

    • Search Google Scholar
    • Export Citation
  • Lucio-Eceiza, E. E., J. F. González-Rouco, E. García-Bustamante, J. Navarro, and H. Beltrami, 2019: Multidecadal to centennial surface wintertime wind variability over northeastern North America via statistical downscaling. Climate Dyn., 53, 4166, https://doi.org/10.1007/s00382-018-4569-5.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Martinez, Y., W. Yu, and H. Lin, 2013: A new statistical–dynamical downscaling procedure based on EOF analysis for regional time series generation. J. Appl. Meteor. Climatol., 52, 935952, https://doi.org/10.1175/JAMC-D-11-065.1.

    • Search Google Scholar
    • Export Citation
  • McVicar, T. R., T. G. Van Niel, L. T. Li, M. L. Roderick, D. P. Rayner, L. Ricciardulli, and R. J. Donohue, 2008: Wind speed climatology and trends for Australia, 1975-2006: Capturing the stilling phenomenon and comparison with near-surface reanalysis output. Geophys. Res. Lett., 35, L20403, https://doi.org/10.1029/2008GL035627.

    • Search Google Scholar
    • Export Citation
  • McVicar, T. R., and Coauthors, 2012: Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. J. Hydrol., 416–417, 182205, https://doi.org/10.1016/j.jhydrol.2011.10.024.

    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., 2012: Can we see the wind? Statistical downscaling of historical sea surface winds in the subarctic northeast Pacific. J. Climate, 25, 15111528, https://doi.org/10.1175/2011JCLI4089.1.

    • Search Google Scholar
    • Export Citation
  • MRI/JMA, 2015: JRA-55C: Monthly means and variances. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, accessed 10 May 2017, https://doi.org/10.5065/D6C827B7.

  • Murthy, K. S., and O. P. Rahi, 2017: A comprehensive review of wind resource assessment. Renewable Sustainable Energy Rev., 72, 13201342, https://doi.org/10.1016/j.rser.2016.10.038.

    • Search Google Scholar
    • Export Citation
  • Najac, J., J. Boé, and L. Terray, 2009: A multi-model ensemble approach for assessment of climate change impact on surface winds in France. Climate Dyn., 32, 615634, https://doi.org/10.1007/s00382-008-0440-4.

    • Search Google Scholar
    • Export Citation
  • National Center for Atmospheric Research, 2016: The Climate Data Guide: Hurrell North Atlantic Oscillation (NAO) Index (PC-based). NCAR, https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-pc-based.

  • North, G. R., F. J. Moeng, T. L. Bell, R. F. Cahalan, F. J. Moeng, T. L. Bell, and R. F. Cahalan, 1982: The latitude dependence of the variance of zonally averaged quantities. Mon. Wea. Rev., 110, 319326, https://doi.org/10.1175/1520-0493(1982)110<0319:TLDOTV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Onogi, K., and Coauthors, 2007: The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85, 369432, https://doi.org/10.2151/jmsj.85.369.

  • Pearson, K., 1901: On lines and planes of closest fit to systems of points in space. London Edinburgh Dublin Philos. Mag. J. Sci., 2, 559572, https://doi.org/10.1080/14786440109462720.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. Springer, 520 pp.

  • Phillips, D., 1990: The Climates of Canada. Environment Canada, 176 pp.

  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, https://doi.org/10.1175/JCLI-D-15-0556.1.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., J. T. Schoof, and R. J. Barthelmie, 2006: Winds of change?: Projections of near-surface winds under climate change scenarios. Geophys. Res. Lett., 33, L11702, https://doi.org/10.1029/2006GL026000.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., and Coauthors, 2009: Wind speed trends over the contiguous United States. J. Geophys. Res., 114, D14105, https://doi.org/10.1029/2008JD011416.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., R. J. Barthelmie, N. E. Clause, M. Drews, N.MacKellar, and E. Kjellström, 2012a: Analyses of possible changes in intense and extreme wind speeds over northern Europe under climate change scenarios. Climate Dyn., 38, 189208, https://doi.org/10.1007/s00382-010-0955-3.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., R. J. Barthelmie, and J. T. Schoof, 2012b: Past and future wind climates over the contiguous USA based on the North American Regional Climate Change Assessment Program model suite. J. Geophys. Res., 117, D19119, https://doi.org/10.1029/2012JD017449.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and J. M. Wallace, 1983: Meteorological aspects of the El Niño/Southern Oscillation. Science, 222, 11951202, https://doi.org/10.1126/science.222.4629.1195.

    • Search Google Scholar
    • Export Citation
  • Richards, W., and Y. Abuamer, 2007: Atmospheric hazards: Extreme wind gust climatology in Atlantic Canada 1955–2000. Meteorological Service of Canada Science Report Series EN57-36/2007-1E-PDF, 47 pp.

  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, https://doi.org/10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and P. D. Jones, 1987: An extension of the Tahiti–Darwin Southern Oscillation Index. Mon. Wea. Rev., 115, 21612165, https://doi.org/10.1175/1520-0493(1987)115<2161:AEOTTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010a: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010b: NCEP Climate Forecast System Reanalysis (CFSR) monthly products, January 1979 to December 2010. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, accessed 25 May 2015, https://doi.org/10.5065/D6DN438J.

  • Sharp, E., P. Dodds, M. Barrett, and C. Spataru, 2015: Renew. Energy, 77, 527538, https://doi.org/10.1016/j.renene.2014.12.025.

  • Smits, A., A. M. Klein Tank, and G. P. Können, 2005: Trends in storminess over the Netherlands, 1962-2002. Int. J. Climatol., 25, 13311344, https://doi.org/10.1002/joc.1195.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, https://doi.org/10.1029/2000JD900719.

    • Search Google Scholar
    • Export Citation
  • Themeßl, M. J., A. Gobiet, and A. Leuprecht, 2011: Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. Int. J. Climatol., 31, 15301544, https://doi.org/10.1002/joc.2168.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 1297, https://doi.org/10.1029/98GL00950.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000a: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, https://doi.org/10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000b: Annular modes in the extratropical circulation. Part II: Trends. J. Climate, 13, 10181036, https://doi.org/10.1175/1520-0442(2000)013<1018:AMITEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Torralba, V., F. J. Doblas-Reyes, D. MacLeod, I. Christel, and M. Davis, 2017: Seasonal climate prediction: A new source of information for the management of wind energy resources. J. Appl. Meteor. Climatol., 56, 12311247, https://doi.org/10.1175/JAMC-D-16-0204.1.

    • Search Google Scholar
    • Export Citation
  • Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 6178, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1984: Signal versus noise in the Southern Oscillation. Mon. Wea. Rev., 112, 326332, https://doi.org/10.1175/1520-0493(1984)112<0326:svnits>2.0.co;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. W. Hurrell, 1994: Decadal atmosphere-ocean variations in the Pacific. Climate Dyn., 9, 303319, https://doi.org/10.1007/BF00204745.

    • Search Google Scholar
    • Export Citation
  • Troen, I., and E. L. Petersen, 1989: European Wind Atlas. Risø National Laboratory, 656 pp.

  • Tuller, S. E., 2004: Measured wind speed trends on the west coast of Canada. Int. J. Climatol., 24, 13591374, https://doi.org/10.1002/joc.1073.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, https://doi.org/10.1256/qj.04.176.

    • Search Google Scholar
    • Export Citation
  • van der Kamp, D., C. L. Curry, and A. H. Monahan, 2012: Statistical downscaling of historical monthly mean winds over a coastal region of complex terrain. II. Predicting wind components. Climate Dyn., 38, 13011311, https://doi.org/10.1007/s00382-011-1175-1.

    • Search Google Scholar
    • Export Citation
  • Vautard, R., J. Cattiaux, P. Yiou, J.-N. Thépaut, and P. Ciais, 2010: Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat. Geosci., 3, 756761, https://doi.org/10.1038/ngeo979.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., E. Zorita, and U. Cubasch, 1993: Downscaling of global climate change estimates to regional scales: An application to Iberian rainfall in wintertime. J. Climate, 6, 11611171, https://doi.org/10.1175/1520-0442(1993)006<1161:DOGCCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wan, H., X. L. Wang, and V. R. Swail, 2010: Homogenization and trend analysis of Canadian near-surface wind speeds. J. Climate, 23, 1209, https://doi.org/10.1175/2009JCLI3200.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X. L., H. Wan, and V. R. Swail, 2006: Observed changes in cyclone activity in Canada and their relationships to major circulation regimes. J. Climate, 19, 896915, https://doi.org/10.1175/JCLI3664.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X. L., Y. Feng, G. P. Compo, V. R. Swail, F. W. Zwiers, R. J. Allan, and P. D. Sardeshmukh, 2013: Trends and low frequency variability of extra-tropical cyclone activity in the ensemble of twentieth century reanalysis. Climate Dyn., 40, 27752800, https://doi.org/10.1007/s00382-012-1450-9.

    • Search Google Scholar
    • Export Citation
  • WMO, 2011: Guide to climatological practices. WMO-100, 117 pp., https://library.wmo.int/doc_num.php?explnum_id=5541.

  • Wójcik, R., 2015: Reliability of CMIP5 GCM simulations in reproducing atmospheric circulation over Europe and the North Atlantic: A statistical downscaling perspective. Int. J. Climatol., 35, 714732, https://doi.org/10.1002/joc.4015.

    • Search Google Scholar
    • Export Citation
  • Wu, J., J. Zha, and D. Zhao, 2017: Evaluating the effects of land use and cover change on the decrease of surface wind speed over China in recent 30 years using a statistical downscaling method. Climate Dyn., 48, 131149, https://doi.org/10.1007/s00382-016-3065-z.

    • Search Google Scholar
    • Export Citation
  • Xoplaki, E., J. F. González-Rouco, J. Luterbacher, and H. Wanner, 2003: Mediterranean summer air temperature variability and its connection to the large-scale atmospheric circulation and SSTs. Climate Dyn., 20, 723739, https://doi.org/10.1007/s00382-003-0304-x.

    • Search Google Scholar
    • Export Citation
  • Xoplaki, E., J. F. González-Rouco, J. Luterbacher, and H. Wanner, 2004: Wet season Mediterranean precipitation variability: Influence of large-scale dynamics and trends. Climate Dyn., 23, 6378, https://doi.org/10.1007/s00382-004-0422-0.

    • Search Google Scholar
    • Export Citation
  • Yan, Z., S. Bate, R. E. Chandler, V. Isham, and H. Wheater, 2002: An analysis of daily maximum wind speed in northwestern Europe using generalized linear models. J. Climate, 15, 20732088, https://doi.org/10.1175/1520-0442(2002)015<2073:AAODMW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020, https://doi.org/10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zorita, E., and H. von Storch, 1999: The analog method as a simple statistical downscaling technique: Comparison with more complicated methods. J. Climate, 12, 24742489, https://doi.org/10.1175/1520-0442(1999)012<2474:TAMAAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1 1 1
Full Text Views 0 0 0
PDF Downloads 0 0 0

Summertime Surface Wind Variability over Northeastern North America at Multidecadal to Centennial Time Scales via Statistical Downscaling

View More View Less
  • 1 Facultad de Ciencias Físicas, Universidad Complutense Madrid, and Instituto de Geociencias (UCM-CSIC), Madrid, Spain
  • 2 División de Energías Renovables, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
  • 3 Facultad de Ciencias Físicas, Universidad Complutense Madrid, and Instituto de Geociencias (UCM-CSIC), Madrid, Spain
  • 4 Climate and Atmospheric Sciences Institute, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
© Get Permissions
Restricted access

Abstract

The variability of the surface zonal and meridional wind components over northeastern North America during June–October is analyzed through a statistical downscaling (SD) approach that relates the main wind and large-scale circulation modes. An observational surface wind dataset of 525 sites over 1953–2010 provides the local information. Twelve global reanalyses provide the large-scale information. The large-to-local variability of the wind field can be explained, to a large extent, in terms of four coupled modes of circulation explaining a similar amount of variance. The SD method is mostly sensitive to the number of retained modes and subregionally to the large-scale information variable, but not to the reanalysis source. The SD methodological uncertainty based on the use of multiple configurations is directly related to the variability of the wind, similar in relative terms for both components. With an adequate choice of parameters the SD estimates provide more realistic variances than the reanalysis wind, although their correlations with respect to observations are lower than the latter. Additionally, while these different SD estimations are very similar on the reanalysis used, the various reanalysis wind fields show noticeable differences, especially in their variances. The wind variability is reconstructed back to 1850, making use of century-long reanalyses and two additional SLP gridded datasets, which allows estimating the variability at decadal to multidecadal time scales. Recent negative (significant) trends in the zonal component do not stand out in the multidecadal context, but they are consistent with a global stilling process, and are partially attributable to changes in the large-scale dynamics.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Etor E. Lucio-Eceiza, eelucio@fis.ucm.es

Abstract

The variability of the surface zonal and meridional wind components over northeastern North America during June–October is analyzed through a statistical downscaling (SD) approach that relates the main wind and large-scale circulation modes. An observational surface wind dataset of 525 sites over 1953–2010 provides the local information. Twelve global reanalyses provide the large-scale information. The large-to-local variability of the wind field can be explained, to a large extent, in terms of four coupled modes of circulation explaining a similar amount of variance. The SD method is mostly sensitive to the number of retained modes and subregionally to the large-scale information variable, but not to the reanalysis source. The SD methodological uncertainty based on the use of multiple configurations is directly related to the variability of the wind, similar in relative terms for both components. With an adequate choice of parameters the SD estimates provide more realistic variances than the reanalysis wind, although their correlations with respect to observations are lower than the latter. Additionally, while these different SD estimations are very similar on the reanalysis used, the various reanalysis wind fields show noticeable differences, especially in their variances. The wind variability is reconstructed back to 1850, making use of century-long reanalyses and two additional SLP gridded datasets, which allows estimating the variability at decadal to multidecadal time scales. Recent negative (significant) trends in the zonal component do not stand out in the multidecadal context, but they are consistent with a global stilling process, and are partially attributable to changes in the large-scale dynamics.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Etor E. Lucio-Eceiza, eelucio@fis.ucm.es
Save