• Armour, K. C., N. Siler, A. Donohoe, and G. H. Roe, 2019: Meridional atmospheric heat transport constrained by energetic and mediated by large-scale diffusion. J. Climate, 32, 36553680, https://doi.org/10.1175/JCLI-D-18-0563.1.

    • Search Google Scholar
    • Export Citation
  • Barreiro, M., A. Cherchi, and S. Masina, 2011: Climate sensitivity to changes in ocean heat transport. J. Climate, 24, 50155030, https://doi.org/10.1175/JCLI-D-10-05029.1.

    • Search Google Scholar
    • Export Citation
  • Bice, K. L., C. R. Scotese, D. Seidov, and E. J. Barron, 2000: Quantifying the role of geographic change in Cenozoic ocean heat transport using uncoupled atmosphere and ocean models. Palaeogeogr. Palaeoclimatol. Palaeoecol., 161, 295310, https://doi.org/10.1016/S0031-0182(00)00072-9.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1964: Atlantic air–sea interaction. Advances in Geophysics, 10, 182, https://doi.org/10.1016/S0065-2687(08)60005-9.

  • Blackburn, M., and B. J. Hoskins, 2013: Context and aims of the aqua-planet experiment. J. Meteor. Soc. Japan, 91A, 115, https://doi.org/10.2151/jmsj.2013-A01.

    • Search Google Scholar
    • Export Citation
  • Burls, N. J., and A. V. Fedorov, 2017: Wetter subtropics in a warmer world: Contrasting past and future hydrological cycles. Proc. Natl. Acad. Sci. USA, 114, 12 88812 893, https://doi.org/10.1073/pnas.1703421114.

    • Search Google Scholar
    • Export Citation
  • Czaja, A., and J. Marshall, 2006: The partitioning of poleward heat transport between the atmosphere and ocean. J. Atmos. Sci., 63, 14981511, https://doi.org/10.1175/JAS3695.1.

    • Search Google Scholar
    • Export Citation
  • Enderton, D., and J. Marshall, 2009: Explorations of atmosphere–ocean–ice climates on an aquaplanet and their meridional energy transports. J. Atmos. Sci., 66, 15931611, https://doi.org/10.1175/2008JAS2680.1.

    • Search Google Scholar
    • Export Citation
  • Fang, M., and K. K. Tung, 1996: A simple model of nonlinear Hadley circulation with an ITCZ: Analytic and numerical solutions. J. Atmos. Sci., 53, 12411261, https://doi.org/10.1175/1520-0469(1996)053<1241:ASMONH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ferreira, D., J. Marshall, and J.-M. Campin, 2010: Localization of deep water formation: Role of atmospheric moisture transport and geometrical constraints on ocean circulation. J. Climate, 23, 14561476, https://doi.org/10.1175/2009JCLI3197.1.

    • Search Google Scholar
    • Export Citation
  • Ferreira, D., J. Marshall, and B. E. J. Rose, 2011: Climate determinism revisited: Multiple equilibria in a complex climate model. J. Climate, 24, 9921012, https://doi.org/10.1175/2010JCLI3580.1.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., 2007: The dynamics of idealized convection schemes and their effect on the zonally averaged tropical circulation. J. Atmos. Sci., 64, 19591976, https://doi.org/10.1175/JAS3935.1.

    • Search Google Scholar
    • Export Citation
  • Green, B., and J. Marshall, 2017: Coupling of trade winds with ocean circulation damps ITCZ shifts. J. Climate, 30, 43954411, https://doi.org/10.1175/JCLI-D-16-0818.1.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 2001: The partitioning of the poleward energy transport between the tropical ocean and atmosphere. J. Atmos. Sci., 58, 943948, https://doi.org/10.1175/1520-0469(2001)058<0943:TPOTPE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and A. Y. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37, 515533, https://doi.org/10.1175/1520-0469(1980)037<0515:NASCIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Herweijer, C., R. Seager, M. Winton, and A. Clement, 2005: Why ocean heat transport warms the global mean climate. Tellus, 57A, 662675, https://doi.org/10.3402/tellusa.v57i4.14708.

    • Search Google Scholar
    • Export Citation
  • Hilgenbrink, C. C., and D. L. Hartmann, 2018: The response of Hadley circulation extent to an idealized representation of poleward ocean heat transport in an aquaplanet GCM. J. Climate, 31, 97539770, https://doi.org/10.1175/JCLI-D-18-0324.1.

    • Search Google Scholar
    • Export Citation
  • Hill, S. A., 2019: Theories for past and future monsoon rainfall changes. Curr. Climate Change Rep., 5, 160171, https://doi.org/10.1007/s40641-019-00137-8.

    • Search Google Scholar
    • Export Citation
  • Hill, S. A., Y. Ming, and I. M. Held, 2015: Mechanisms of forced tropical meridional energy flux change. J. Climate, 28, 17251742, https://doi.org/10.1175/JCLI-D-14-00165.1.

    • Search Google Scholar
    • Export Citation
  • Hotinski, R. M., and J. R. Toggweiler, 2003: Impact of a Tethyan circumglobal passage on ocean heat transport and “equable” climates. Paleoceanography, 18, 1007, https://doi.org/10.1029/2001PA000730.

    • Search Google Scholar
    • Export Citation
  • Kang, S., Y. Shin, and S. Xie, 2018: Extratropical forcing and tropical rainfall distribution: Energetics framework and ocean Ekman advection. npj Climate Atmos. Sci., 1, 20172, https://doi.org/10.1038/s41612-017-0004-6.

    • Search Google Scholar
    • Export Citation
  • Koll, D. B., and D. S. Abbot, 2013: Why tropical sea surface temperature is insensitive to ocean heat transport changes. J. Climate, 26, 67426749, https://doi.org/10.1175/JCLI-D-13-00192.1.

    • Search Google Scholar
    • Export Citation
  • Lee, M.-I., M. J. Suarez, I.-S. Kang, I. M. Held, and D. Kim, 2008: A moist benchmark calculation for atmosphere general circulation models. J. Climate, 21, 49344954, https://doi.org/10.1175/2008JCLI1891.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., H. Yang, C. He, and Y. Zhao, 2016: A theory for Bjerknes compensation: The role of climate feedback. J. Climate, 29, 191208, https://doi.org/10.1175/JCLI-D-15-0227.1.

    • Search Google Scholar
    • Export Citation
  • Ma, J., R. Chadwick, K.-H. Seo, C. Dong, G. Huang, G. R. Foltz, and J. H. Jiang, 2018: Responses of the tropical atmospheric circulation to climate change and connection to the hydrological cycle. Annu. Rev. Earth Planet. Sci., 46, 549580, https://doi.org/10.1146/annurev-earth-082517-010102.

    • Search Google Scholar
    • Export Citation
  • Merlis, T., T. Schneider, S. Bordoni, and I. Eisenman, 2013: Hadley circulation response to orbital precession. Part I: Aquaplanets. J. Climate, 26, 740753, https://doi.org/10.1175/JCLI-D-11-00716.1.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., J. Richter, S. Park, P. H. Lauritzen, S. J. Vavrus, P. J. Rasch, and M. Zhang, 2013: The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments. J. Climate, 26, 51505168, https://doi.org/10.1175/JCLI-D-12-00236.1.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 312, https://doi.org/10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pearson, P. N., and M. Palmer, 2000: Atmospheric carbon dioxide concentrations over the past 60 million years. Nature, 406, 695699, https://doi.org/10.1038/35021000.

    • Search Google Scholar
    • Export Citation
  • Rencurrel, M. C., and B. E. J. Rose, 2018: Exploring the climatic response to wide variations in ocean heat transport on an aquaplanet. J. Climate, 31, 62996318, https://doi.org/10.1175/JCLI-D-17-0856.1.

    • Search Google Scholar
    • Export Citation
  • Rose, B. E. J., 2015: Stable “Waterbelt” climates controlled by tropical ocean heat transport: A nonlinear coupled climate mechanism of relevance to Snowball Earth. J. Geophys. Res. Atmos., 120, 14041423, https://doi.org/10.1002/2014JD022659.

    • Search Google Scholar
    • Export Citation
  • Rose, B. E. J., and D. Ferreira, 2013: Ocean heat transport and water vapor greenhouse in a warm equable climate: A new look at the low gradient paradox. J. Climate, 26, 21172136, https://doi.org/10.1175/JCLI-D-11-00547.1.

    • Search Google Scholar
    • Export Citation
  • Rose, B. E. J., and M. C. Rencurrel, 2016: The vertical structure of tropospheric water vapor: Comparing radiative and ocean-driven climate changes. J. Climate, 29, 42514268, https://doi.org/10.1175/JCLI-D-15-0482.1.

    • Search Google Scholar
    • Export Citation
  • Rose, B. E. J., K. Armour, D. Battisti, N. Feldl, and D. Koll, 2014: The dependence of transient climate sensitivity and radiative feedbacks on the spatial pattern of ocean heat uptake. Geophys. Res. Lett., 41, 10711078, https://doi.org/10.1002/2013GL058955.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., 1994: Hadley circulations in radiative-convective equilibrium in an axially symmetric atmosphere. J. Atmos. Sci., 51, 19471968, https://doi.org/10.1175/1520-0469(1994)051<1947:HCIREI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2006: The general circulation of the atmosphere. Annu. Rev. Earth Planet. Sci., 34, 655688, https://doi.org/10.1146/annurev.earth.34.031405.125144.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2017: Feedback of atmosphere–ocean coupling on shifts in the intertropical convergence zone. Geophys. Res. Lett., 44, 11 64411 653, https://doi.org/10.1002/2017GL075817.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., and S. Bordoni, 2008: Eddy-mediated regime transitions in the seasonal cycle of a Hadley circulation and implications for monsoon dynamics. J. Atmos. Sci., 65, 915934, https://doi.org/10.1175/2007JAS2415.1.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., T. Bischoff, and G. Haug, 2014: Migrations and dynamics of the intertropical convergence zone. Nature, 513, 4553, https://doi.org/10.1038/nature13636.

    • Search Google Scholar
    • Export Citation
  • Seo, J., S. M. Kang, and T. M. Merlis, 2017: A model intercomparison of the tropical precipitation response to a CO2 doubling in aquaplanet simulations. Geophys. Res. Lett., 44, 9931000, https://doi.org/10.1002/2016GL072347.

    • Search Google Scholar
    • Export Citation
  • Singh, M. S., and Z. Kuang, 2016: Exploring the role of eddy momentum fluxes in determining the characteristics of the equinoctial Hadley circulation: Fixed-SST simulations. J. Atmos. Sci., 73, 24272444, https://doi.org/10.1175/JAS-D-15-0212.1.

    • Search Google Scholar
    • Export Citation
  • Singh, M. S., Z. Kuang, and Y. Tian, 2017: Eddy influences on the strength of the Hadley circulation: Dynamic and thermodynamic perspectives. J. Atmos. Sci., 74, 467486, https://doi.org/10.1175/JAS-D-16-0238.1.

    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1978: Constraints on dynamical transports of energy on a spherical planet. Dyn. Atmos. Oceans, 2, 123139, https://doi.org/10.1016/0377-0265(78)90006-4.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. Climate Dyn., 14, 34333443, https://doi.org/10.1175/1520-0442(2001)014<3433:EOMAAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. P. Stepaniak, 2003: Covariability of components of poleward atmospheric energy transports on seasonal and interannual timescales. J. Climate, 16, 36913705, https://doi.org/10.1175/1520-0442(2003)016<3691:COCOPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vallis, G., P. Zurita-Gotor, C. Cairns, and J. Kidson, 2015: Response of the large-scale structure of the atmosphere to global warming. Quart. J. Roy. Meteor. Soc., 141, 14791501, https://doi.org/10.1002/qj.2456.

    • Search Google Scholar
    • Export Citation
  • Voigt, A., and Coauthors, 2016: The tropical rain belts with an annual cycle and continent model intercomparison project: TRACMIP. J. Adv. Model. Earth Syst., 8, 18681891, https://doi.org/10.1002/2016MS000748.

    • Search Google Scholar
    • Export Citation
  • Walker, C. C., and T. Schneider, 2006: Eddy influences on Hadley circulations: Simulations with an idealized GCM. J. Atmos. Sci., 63, 33333349, https://doi.org/10.1175/JAS3821.1.

    • Search Google Scholar
    • Export Citation
  • Watt-Meyer, O., and D. M. W. Frierson, 2019: ITCZ width controls on Hadley cell extent and eddy-driven jet position and their response to warming. J. Climate, 32, 11511166, https://doi.org/10.1175/JCLI-D-18-0434.1.

    • Search Google Scholar
    • Export Citation
  • Wei, H.-H., and S. Bordoni, 2018: Energetic constraints on the ITCZ position in idealized simulations with a seasonal cycle. J. Adv. Model. Earth Syst., 10, 17081725, https://doi.org/10.1029/2018MS001313.

    • Search Google Scholar
    • Export Citation
  • Winton, M., 2003: On the climatic impact of ocean circulation. J. Climate, 16, 28752889, https://doi.org/10.1175/1520-0442(2003)016<2875:OTCIOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2005: The total meridional heat flux and its oceanic and atmospheric partition. J. Climate, 18, 43744380, https://doi.org/10.1175/JCLI3539.1.

    • Search Google Scholar
    • Export Citation
  • Yu, S., and M. S. Pritchard, 2019: A strong role for the AMOC in partitioning global energy transport and shifting ITCZ position in response to latitudinally discrete solar forcing in CESM1.2. J. Climate, 32, 22072226, https://doi.org/10.1175/JCLI-D-18-0360.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2 2 2
Full Text Views 0 0 0
PDF Downloads 0 0 0

The Efficiency of the Hadley Cell Response to Wide Variations in Ocean Heat Transport

View More View Less
  • 1 Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York
© Get Permissions
Restricted access

Abstract

The Hadley cell (HC) plays a key role in the climate response to variations in ocean heat transport (OHT). Increased OHT is characterized by both a robust slowdown of this overturning circulation, with consequent changes in cloudiness driving the climate response, and a compensating reduction in the atmospheric heat transport (AHT). Here a suite of slab-ocean aquaplanet GCM simulations is used to study the robustness of mechanisms driving changes in HC mass and energy transport across a wide range of idealized spatial patterns of OHT. The HC response is intrinsically related to both the spatial pattern of OHT and the dynamical mechanisms driving the slowdown of the cell. The reduced energy flux of the HC is associated with reductions in both the mass flux and the gross moist stability (GMS) of the cell in all cases. However, when OHT convergence patterns are confined to the subtropics and equatorward thereof (i.e., subtropical overturning cells), the circulation response is largely momentum-conserving in nature when compared to OHT convergence patterns that extend into the midlatitudes, resulting in a deformation of the anomalous streamfunction following angular momentum contours. The effects of this deformation are quantified through a simple, yet novel approach of splitting the streamfunction anomalies into their “speed” and “shape” components. The tilt of the outer branch of the streamfunction anomaly dampens the direct climate effects of the slowdown of the cell while enhancing the change in GMS, effectively decoupling the change in the energy flux from the slowdown.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: M. Cameron Rencurrel, crencurrel@albany.edu

Abstract

The Hadley cell (HC) plays a key role in the climate response to variations in ocean heat transport (OHT). Increased OHT is characterized by both a robust slowdown of this overturning circulation, with consequent changes in cloudiness driving the climate response, and a compensating reduction in the atmospheric heat transport (AHT). Here a suite of slab-ocean aquaplanet GCM simulations is used to study the robustness of mechanisms driving changes in HC mass and energy transport across a wide range of idealized spatial patterns of OHT. The HC response is intrinsically related to both the spatial pattern of OHT and the dynamical mechanisms driving the slowdown of the cell. The reduced energy flux of the HC is associated with reductions in both the mass flux and the gross moist stability (GMS) of the cell in all cases. However, when OHT convergence patterns are confined to the subtropics and equatorward thereof (i.e., subtropical overturning cells), the circulation response is largely momentum-conserving in nature when compared to OHT convergence patterns that extend into the midlatitudes, resulting in a deformation of the anomalous streamfunction following angular momentum contours. The effects of this deformation are quantified through a simple, yet novel approach of splitting the streamfunction anomalies into their “speed” and “shape” components. The tilt of the outer branch of the streamfunction anomaly dampens the direct climate effects of the slowdown of the cell while enhancing the change in GMS, effectively decoupling the change in the energy flux from the slowdown.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: M. Cameron Rencurrel, crencurrel@albany.edu
Save