• Beucler, T., and T. W. Cronin, 2016: Moisture-radiative cooling instability. J. Adv. Model. Earth Syst., 8, 16201640, https://doi.org/10.1002/2016MS000763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and P. K. Smolarkiewicz, 1989: Gravity waves, compensating subsidence and detrainment around cumulus clouds. J. Atmos. Sci., 46, 740759, https://doi.org/10.1175/1520-0469(1989)046<0740:GWCSAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., P. N. Blossey, and M. Khairoutdinov, 2005: An energy-balance analysis of deep convective self-aggregation above uniform SST. J. Atmos. Sci., 62, 42734292, https://doi.org/10.1175/JAS3614.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1963: A note on large-scale motions in the tropics. J. Atmos. Sci., 20, 607609, https://doi.org/10.1175/1520-0469(1963)020<0607:ANOLSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866.

  • Held, I. M., and B. J. Soden, 2000: Water vapor feedback and global warming. Annu. Rev. Energy Environ., 25, 441475, https://doi.org/10.1146/annurev.energy.25.1.441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, M. M., and C. M. Bitz, 2003: Polar amplification of climate change in coupled models. Climate Dyn., 21, 221232, https://doi.org/10.1007/s00382-003-0332-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ingersoll, A. P., 1969: The runaway greenhouse: A history of water on Venus. J. Atmos. Sci., 26, 11911198, https://doi.org/10.1175/1520-0469(1969)026<1191:TRGAHO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koll, D. D. B., and D. S. Abbot, 2016: Temperature structure and atmospheric circulation of dry tidally locked rocky exoplanets. Astrophys. J., 825, 99, https://doi.org/10.3847/0004-637X/825/2/99.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. T. Wetherald, 1967: Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci., 24, 241259, https://doi.org/10.1175/1520-0469(1967)024<0241:TEOTAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. T. Wetherald, 1975: The effects of doubling the CO2 concentration on the climate of a general circulation model. J. Atmos. Sci., 32, 315, https://doi.org/10.1175/1520-0469(1975)032<0003:TEODTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mills, S. M., and D. S. Abbot, 2013: Utility of the weak temperature gradient approximation for Earth-like tidally locked exoplanets. Astrophys. J., 774, L17, https://doi.org/10.1088/2041-8205/774/2/L17.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 1995: Thermostats, radiator fins, and the local runaway greenhouse. J. Atmos. Sci., 52, 17841806, https://doi.org/10.1175/1520-0469(1995)052<1784:TRFATL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 2010a: A palette of climates for Gliese 581g. Astrophys. J., 726, L8, https://doi.org/10.1088/2041-8205/726/1/L8.

  • Pierrehumbert, R. T., 2010b: Principles of Planetary Climate. Cambridge University Press, 652 pp.

    • Crossref
    • Export Citation
  • Polyakov, I. V., and Coauthors, 2002: Observationally based assessment of polar amplification of global warming. Geophys. Res. Lett., 29, 1878, https://doi.org/10.1029/2001GL011111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pritchard, M. S., and D. Yang, 2016: Response of the superparameterized Madden–Julian oscillation to extreme climate and basic state variation challenges a moisture mode view. J. Climate, 29, 49955008, https://doi.org/10.1175/JCLI-D-15-0790.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidel, S., and D. Yang, 2020: The lightness of water vapor helps to stabilize tropical climate. Sci. Adv., in press.

    • Crossref
    • Export Citation
  • Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 36503665, https://doi.org/10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001: Organization of tropical convection in low vertical wind shears: The role of water vapor. J. Atmos. Sci., 58, 529545, https://doi.org/10.1175/1520-0469(2001)058<0529:OOTCIL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2017: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. 2nd ed. Cambridge University Press, 946 pp.

    • Crossref
    • Export Citation
  • Yang, D., 2018a: Boundary layer diabatic processes, the virtual effect, and convective self-aggregation. J. Adv. Model. Earth Syst., 10, 21632176, https://doi.org/10.1029/2017MS001261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., 2018b: Boundary layer height and buoyancy determine the horizontal scale of convective self-aggregation. J. Atmos. Sci., 75, 469478, https://doi.org/10.1175/JAS-D-17-0150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., 2019: Convective heating leads to self-aggregation by generating available potential energy. Geophys. Res. Lett., 46, 10 68710 696, https://doi.org/10.1029/2019GL083805.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., and A. P. Ingersoll, 2013: Triggered convection, gravity waves, and the MJO: A shallow-water model. J. Atmos. Sci., 70, 24762486, https://doi.org/10.1175/JAS-D-12-0255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., and A. P. Ingersoll, 2014: A theory of the MJO horizontal scale. Geophys. Res. Lett., 41, 10591064, https://doi.org/10.1002/2013GL058542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., and D. S. Abbot, 2014: A low-order model of water vapor, clouds, and thermal emission for tidally locked terrestrial planets. Astrophys. J., 784, 155, https://doi.org/10.1088/0004-637X/784/2/155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., N. B. Cowan, and D. S. Abbot, 2013: Stabilizing cloud feedback dramatically expands the habitable zone of tidally locked planets. Astrophys. J., 771, L45, https://doi.org/10.1088/2041-8205/771/2/L45.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 34 34 19
Full Text Views 15 15 12
PDF Downloads 17 17 13

The Incredible Lightness of Water Vapor

View More View Less
  • 1 University of California, Davis, and Lawrence Berkeley National Laboratory, Berkeley, California
© Get Permissions
Restricted access

Abstract

The molar mass of water vapor is much less than that of dry air. This makes a moist parcel lighter than a dry parcel of the same temperature and pressure. This effect is referred to as the vapor buoyancy effect and has often been overlooked in climate studies. We propose that the vapor buoyancy effect increases Earth’s outgoing longwave radiation (OLR) and that this negative radiative effect increases with warming, stabilizing Earth’s climate. We illustrate this mechanism in an idealized tropical atmosphere, where there is no horizontal buoyancy gradient in the free troposphere. Temperature increases toward dry atmosphere columns to compensate the reduced vapor buoyancy, increasing OLR by O(1 W m−2) at the reference climate. In warmer climates, the temperature difference between moist and dry columns would increase as a result of increasing atmospheric water vapor, leading to enhanced radiative effect and thereby stabilizing Earth’s climate. We estimate that this feedback strength is about O(0.2 W m−2 K−1) in the idealized atmosphere, which compares to cloud feedback and surface albedo feedback in the current climate. We further show evidence from observations and real-gas radiative transfer calculations for a significant radiative effect of vapor buoyancy in the tropical atmosphere.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Da Yang, dayang@ucdavis.edu

Abstract

The molar mass of water vapor is much less than that of dry air. This makes a moist parcel lighter than a dry parcel of the same temperature and pressure. This effect is referred to as the vapor buoyancy effect and has often been overlooked in climate studies. We propose that the vapor buoyancy effect increases Earth’s outgoing longwave radiation (OLR) and that this negative radiative effect increases with warming, stabilizing Earth’s climate. We illustrate this mechanism in an idealized tropical atmosphere, where there is no horizontal buoyancy gradient in the free troposphere. Temperature increases toward dry atmosphere columns to compensate the reduced vapor buoyancy, increasing OLR by O(1 W m−2) at the reference climate. In warmer climates, the temperature difference between moist and dry columns would increase as a result of increasing atmospheric water vapor, leading to enhanced radiative effect and thereby stabilizing Earth’s climate. We estimate that this feedback strength is about O(0.2 W m−2 K−1) in the idealized atmosphere, which compares to cloud feedback and surface albedo feedback in the current climate. We further show evidence from observations and real-gas radiative transfer calculations for a significant radiative effect of vapor buoyancy in the tropical atmosphere.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Da Yang, dayang@ucdavis.edu
Save