• Acosta Navarro, J. C., and Coauthors, 2016: Amplification of Arctic warming by past air pollution reductions in Europe. Nat. Geosci., 9, 277281, https://doi.org/10.1038/ngeo2673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., 1976: Climatological spectral study of 500 mb geopotential height of Northern Hemisphere. J. Atmos. Sci., 33, 16071623, https://doi.org/10.1175/1520-0469(1976)033<1607:ACSSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bradley, R. S., F. T. Keimig, and H. F. Diaz, 2004: Projected temperature changes along the American cordillera and the planned GCOS network. Geophys. Res. Lett., 31, L16210, https://doi.org/10.1029/2004GL020229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burn, C. R., 1994: Permafrost, tectonics, and past and future regional climate change, Yukon and adjacent Northwest Territories. Can. J. Earth Sci., 31, 182191, https://doi.org/10.1139/e94-015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bye, J., K. Fraedrich, E. Kirk, S. Schubert, and X. Zhu, 2011: Random walk lengths of about 30 years in global climate. Geophys. Res. Lett., 38, L05806, https://doi.org/10.1029/2010GL046333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, B., W. C. Chao, and X. Liu, 2003: Enhanced climatic warming in the Tibetan Plateau due to doubling CO2: A model study. Climate Dyn., 20, 401413, https://doi.org/10.1007/s00382-002-0282-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • Daly, C., M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis, and P. A. Pasteris, 2008: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol., 28, 20312064, https://doi.org/10.1002/joc.1688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, A., and G. X. Wu, 2006: Change of cloud amount and the climate warming on the Tibetan Plateau. Geophys. Res. Lett., 33, L22704, https://doi.org/10.1029/2006GL027946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elliott, W. P., R. J. Ross, and W. H. Blackmore, 2002: Recent changes in NWS upper-air observations with emphasis on changes from VIZ to Vaisala radiosondes. Bull. Amer. Meteor. Soc., 83, 10031017, https://doi.org/10.1175/1520-0477(2002)083<1003:RCINUA>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fisher, D. A., and Coauthors, 2004: Stable isotope records from Mount Logan, Eclipse ice cores and nearby Jellybean Lake. Water cycle of the North Pacific over 2000 years and over five vertical kilometers: Sudden shifts and tropical connections. Geogr. Phys. Quat., 58, 337352, https://doi.org/10.7202/013147AR.

    • Search Google Scholar
    • Export Citation
  • Fisher, D. A., and Coauthors, 2008: The Mt Logan Holocene-late Wisconsinan isotope record: Tropical Pacific–Yukon connections. Holocene, 18, 667677, https://doi.org/10.1177/0959683608092236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fliri, F., 1971: Neue klimatologische Querprofile der Alpen—Ein Energiehaushalt. Ann. Meteor., 5, 9397.

  • Frierson, D. M. W., 2006: Robust increases in midlatitude static stability in simulations of global warming. Geophys. Res. Lett., 33, L24816, https://doi.org/10.1029/2006GL027504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., and J. M. Flato, 1999: Enhanced climate change and its detection over the Rocky Mountains. J. Climate, 12, 230243, https://doi.org/10.1175/1520-0442-12.1.230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., J. W. Hurrell, M. R. Marinucci, and M. Beniston, 1997: Elevation dependency of the surface climate change signal: A model study. J. Climate, 10, 288296, https://doi.org/10.1175/1520-0442(1997)010<0288:EDOTSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, A., and S. Manabe, 1999: Role of water vapor feedback in unperturbed climate variability and global warming. J. Climate, 12, 23272346, https://doi.org/10.1175/1520-0442(1999)012<2327:TROWVF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, D. K., G. A. Riggs, V. V. Salomonson, N. E. DiGirolamo, and K. J. Bayd, 2002: MODIS snow-cover products. Remote Sens. Environ., 83, 181194, https://doi.org/10.1016/S0034-4257(02)00095-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2000: Water vapor feedback and global warming. Annu. Rev. Environ. Resour., 25, 441475, https://doi.org/10.1146/annurev.energy.25.1.441.

    • Search Google Scholar
    • Export Citation
  • Herman, J., M. T. DeLand, L.-K. Huang, G. Labow, S. A. Lloyd, J. Mao, W. Qin, and C. Weaver, 2013: A net decrease in the Earth’s cloud, aerosol, and surface 340 nm reflectivity during the past 33 yr (1979–2011). Atmos. Chem. Phys., 13, 85058524, https://doi.org/10.5194/acp-13-8505-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hik, D. S., and S. N. Williamson, 2019: Need for mountain weather stations climbs. Science, 366, 1083, https://doi.org/10.1126/science.aaz7450.

  • Holdsworth, G., and Coauthors, 1996: Historical biomass burning: Late 19th century pioneer agriculture revolution in Northern Hemisphere ice core data and its atmospheric interpretation. J. Geophys. Res., 101, 23 31723 334, https://doi.org/10.1029/96JD01158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, N. C., R. Gautam, A. M. Sayer, C. Bettenhausen, C. Li, M. J. Jeong, S.-C. Tsay, and B. N. Holben, 2012: Global and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements from 1997 to 2010. Atmos. Chem. Phys., 12, 80378053, https://doi.org/10.5194/acp-12-8037-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, J., Y.-S. Choi, W. Kim, H. Su, and J. H. Jiang, 2018: Observational estimation of radiative feedback to surface air temperature over northern high latitudes. Climate Dyn., 50, 615628, https://doi.org/10.1007/s00382-017-3629-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jarosch, A. H., F. S. Anslow, and G. K. C. Clarke, 2012: High-resolution precipitation and temperature downscaling for glacier models. Climate Dyn., 38, 391409, https://doi.org/10.1007/s00382-010-0949-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, A. G., and J. Stroeve, 2002: Development and validation of a snow albedo algorithm for the MODIS instrument. Ann. Glaciol., 34, 4552, https://doi.org/10.3189/172756402781817662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kotlarski, S., T. Bosshard, D. Lüthi, P. Pall, and C. Schär, 2012: Elevation gradients of European climate change in the regional climate model COSMO-CLM. Climatic Change, 112, 189215, https://doi.org/10.1007/s10584-011-0195-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrimore, J. H., M. J. Menne, B. E. Gleason, C. N. Williams, D. B. Wuertz, R. S. Vose, and J. Rennie, 2011: An overview of the Global Historical Climatology Network monthly mean temperature data set, version 3. J. Geophys. Res., 116, D19121, https://doi.org/10.1029/2011JD016187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., Z. Cheng, L. Yan, and Z.-Y. Yin, 2009: Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings. Global Planet. Change, 68, 164174, https://doi.org/10.1016/j.gloplacha.2009.03.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marcus, M. G., and J. R. LaBelle, 1970: Summer climate observations at the 5,360 meter level, Mt. Logan, Yukon: 1968–1969. Arct. Antarct. Alp. Res., 2, 103114, https://doi.org/10.2307/1550346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesquita, M. S., D. E. Atkinson, and K. I. Hodges, 2010: Characteristics and variability of storm tracks in the North Pacific, Bering Sea, and Alaska. J. Climate, 23, 294311, https://doi.org/10.1175/2009JCLI3019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., G. Holdsworth, and K. Alverson, 2002: Climate change in the North Pacific region over the past three centuries. Nature, 420, 401403, https://doi.org/10.1038/nature01229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naakka, T., T. Nygård, T. Vihma, J. Sedlar, and R. Graversen, 2019: Atmospheric moisture transport between mid-latitudes and the Arctic: Regional, seasonal and vertical distributions. Int. J. Climatol., 39, 28622879, https://doi.org/10.1002/joc.5988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA, 2016: State of the climate: Global climate report for annual 2015. National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI), accessed 15 January 2020, www.ncdc.noaa.gov/sotc/global/201513.

  • Osborne, E., J. Richter-Menge, and M. Jeffries, Eds., 2018: Arctic report card 2018. NOAA, 110 pp., https://www.arctic.noaa.gov/Report-Card.

  • Osterberg, E. C., P. A. Mayewski, D. A. Fisher, K. J. Kreutz, K. A. Maasch, S. B. Sneed, and E. Kelsey, 2014: Mount Logan ice core record of tropical and solar influences on Aleutian low variability: 500–1998 A.D. J. Geophys. Res. Atmos., 119, 11 18911 204, https://doi.org/10.1002/2014JD021847.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osterberg, E. C., and Coauthors, 2017: The 1200 year composite ice core record of Aleutian low intensification. Geophys. Res. Lett., 44, 74477454, https://doi.org/10.1002/2017GL073697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oyler, J. W., S. Z. Dobrowski, A. P. Ballantyne, A. E. Klene, and S. W. Running, 2015: Artificial amplification of warming trends across the mountains of the western United States. Geophys. Res. Lett., 42, 153161, https://doi.org/10.1002/2014GL062803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palazzi, E., L. Filippi, and J. von Hardenberg, 2017: Insights into elevation dependent warming in the Tibetan Plateau–Himalayas from CMIP5 model simulations. Climate Dyn., 48, 39914008, https://doi.org/10.1007/S00382-016-3316-Z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palazzi, E., L. Mortarini, S. Terzago, and J. von Hardenberg, 2018: Elevation-dependent warming in global climate model simulations at high spatial resolution. Climate Dyn., 52, 26852702, https://doi.org/10.1007/s00382-018-4287-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pepin, N. C., and D. J. Seidel, 2005: A global comparison of surface and free-air temperatures at high elevations. J. Geophys. Res., 110, D03104, https://doi.org/10.1029/2004JD005047.

    • Search Google Scholar
    • Export Citation
  • Pepin, N. C., and J. D. Lundquist, 2008: Temperature trends at high elevations: Patterns across the globe. Geophys. Res. Lett., 35, L14701, https://doi.org/10.1029/2008GL034026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pepin, N. C., and Coauthors, 2015: Elevation-dependent warming in mountain regions of the world. Nat. Climate Change, 5, 424430, https://doi.org/10.1038/nclimate2563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Porter, T. J., S. W. Schoenemann, L. J. Davies, E. J. Steig, S. Bandara, and D. G. Froese, 2019: Recent summer warming in the northwestern Canada exceeds the Holocene thermal maximum. Nat. Commun., 10, 1631, https://doi.org/10.1038/s41467-019-09622-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qin, J., K. Yang, S. Liang, and X. Guo, 2009: The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Climatic Change, 97, 321327, https://doi.org/10.1007/S10584-009-9733-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., and G. Carmichael, 2008: Global and regional climate changes due to black carbon. Nat. Geosci., 1, 221227, https://doi.org/10.1038/ngeo156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rangwala, I., 2013: Amplified water vapour feedback at high altitudes during winter. Int. J. Climatol., 33, 897903, https://doi.org/10.1002/joc.3477.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rangwala, I., J. R. Miller, and M. Xu, 2009: Warming in the Tibetan Plateau: Possible influences of the changes in surface water vapor. Geophys. Res. Lett., 36, L06703, https://doi.org/10.1029/2009GL037245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rangwala, I., J. R. Miller, G. L. Russell, and M. Xu, 2010: Using a global climate model to evaluate the influences of water vapor, snow cover and atmospheric aerosol on warming in the Tibetan Plateau during the twenty-first century. Climate Dyn., 34, 859872, https://doi.org/10.1007/s00382-009-0564-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rangwala, I., E. Sinsky, and J. R. Miller, 2016: Variability in projected elevation dependent warming in boreal midlatitude winter in CMIP5 climate models and its potential drivers. Climate Dyn., 46, 21152122, https://doi.org/10.1007/s00382-015-2692-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruckstuhl, C., R. Philipona, J. Morland, and A. Ohmura, 2007: Observed relationship between surface specific humidity, integrated water vapor, and longwave downward radiation at different altitudes. J. Geophys. Res., 112, D03302, https://doi.org/10.1029/2006JD007850.

    • Search Google Scholar
    • Export Citation
  • Rupp, D. E., S. Li, P. W. Mote, K. M. Shell, N. Massey, S. N. Sparrow, D. C. H. Wallom, and M. R. Allen, 2017: Seasonal spatial patterns of projected anthropogenic warming in complex terrain: A modeling study of the western US. Climate Dyn., 48, 21912213, https://doi.org/10.1007/s00382-016-3200-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salathé, E. P., Jr., R. Steed, C. F. Mass, and P. H. Zahn, 2008: A high resolution climate model for the U.S. Pacific Northwest: Mesoscale feedbacks and local responses to climate change. J. Climate, 21, 57085726, https://doi.org/10.1175/2008JCLI2090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M., and R. G. Barry, 2011: Processes and impacts of Arctic amplification: A research synthesis. Global Planet. Change, 77, 8596, https://doi.org/10.1016/j.gloplacha.2011.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M., A. Barrett, J. Stroeve, D. Kindig, and M. Holland, 2009: The emergence of surface-based Arctic amplification. Cryosphere, 3, 1119, https://doi.org/10.5194/tc-3-11-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smirnov, V. V., and G. W. K. Moore, 1999: Spatial and temporal structure of atmospheric water vapor transport in the Mackenzie River basin. J. Climate, 12, 681696, https://doi.org/10.1175/1520-0442(1999)012<0681:SATSOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J., J. E. Box, and T. Haran, 2006: Evaluation of the MODIS (MO10A1) daily snow albedo product over the Greenland ice sheet. Remote Sens. Environ., 105, 155171, https://doi.org/10.1016/J.RSE.2006.06.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vuille, M., E. Franquist, R. Garreaud, W. S. Lavado Casimiro, and B. Cáceres, 2015: Impact of the global warming hiatus on Andean temperature. J. Geophys. Res. Atmos., 120, 37453757, https://doi.org/10.1002/2015JD023126.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wahl, H. E., D. B. Fraser, R. C. Harvey, and J. B. Maxwell, 1987: Climate of Yukon, Vol. 40, Canada Atmospheric Environment Service Climatological Studies. Environment Canada, 323 pp.

  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walton, D. B., F. Sun, A. Hall, and S. Capps, 2015: A hybrid dynamical–statistical downscaling technique. Part I: Development and validation of the technique. J. Climate, 28, 45974617, https://doi.org/10.1175/JCLI-D-14-00196.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Q., X. Fan, and M. Wang, 2014: Recent warming amplification over high elevation regions across the globe. Climate Dyn., 43, 87101, https://doi.org/10.1007/s00382-013-1889-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Q., X. Fan, and M. Wang, 2016: Evidence of high-elevation amplification versus Arctic amplification. Sci. Rep., 6, 19219, https://doi.org/10.1038/srep19219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williamson, S. N., L. Copland, and D. S. Hik, 2016: The accuracy of satellite-derived albedo for northern alpine and glaciated land covers. Polar Sci., 10, 262269, https://doi.org/10.1016/j.polar.2016.06.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williamson, S. N., D. S. Hik, J. A. Gamon, A. H. Jarosch, F. S. Anslow, G. K. C. Clarke, and S. Rupp, 2017: Spring and summer monthly MODIS LST is inherently biased compared to air temperature in snow covered sub-Arctic mountains. Remote Sens. Environ., 189, 1424, https://doi.org/10.1016/j.rse.2016.11.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williamson, S. N., F. S. Anslow, G. K. C. Clarke, J. A. Gamon, A. H. Jarosch, and D. S. Hik, 2018: Spring warming in Yukon mountains is not amplified by snow albedo feedback. Sci. Rep., 8, 9000, https://doi.org/10.1038/s41598-018-27348-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winski, D., and Coauthors, 2017: Industrial-age doubling of snow accumulation in the Alaska Range linked to tropical ocean warming. Sci. Rep., 7, 17869, https://doi.org/10.1038/S41598-017-18022-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winski, D., and Coauthors, 2018: A 400-year ice core melt layer record of summertime warming in the Alaska Range. J. Geophys. Res. Atmos., 123, 35943611, https://doi.org/10.1002/2017JD027539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, L., Z. Liu, G. Chen, J. E. Kutzbach, and X. Liu, 2016: Mechanisms of elevation-dependent warming over the Tibetan Plateau in quadrupled CO2 experiments. Climatic Change, 135, 509519, https://doi.org/10.1007/s10584-016-1599-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Q., S. Kang, N. Pepin, W.-A. Flügel, Y. Yan, H. Behrawan, and J. Huang, 2010: Relationship between temperature trend magnitude, elevation and mean temperature in the Tibetan Plateau from homogenized surface stations and reanalysis data. Global Planet. Change, 71, 124133, https://doi.org/10.1016/J.GLOPLACHA.2010.01.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zdanowicz, C., G. Hall, J. Vaive, Y. Amelin, J. Percival, I. Girard, P. Biscaye, and A. Bory, 2006: Asian dustfall in the St. Elias Mountains, Yukon, Canada. Geochim. Cosmochim. Acta, 70, 34933507, https://doi.org/10.1016/j.gca.2006.05.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zdanowicz, C., and Coauthors, 2014: Ice cores from the St. Elias Mountains, Yukon, Canada: Their significance for climate, atmospheric composition and volcanism in the North Pacific region. Arctic, 67, 3557, https://doi.org/10.14430/arctic4352.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, Z., and Coauthors, 2015: Regional air pollution brightening reverses the greenhouse gases induced warming–elevation relationship. Geophys. Res. Lett., 42, 45634572, https://doi.org/10.1002/2015GL064410.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 51 51 28
Full Text Views 7 7 6
PDF Downloads 9 9 8

Evidence for Elevation-Dependent Warming in the St. Elias Mountains, Yukon, Canada

View More View Less
  • 1 Department of Geography, Environment and Geomatics, University of Ottawa, Ottawa, Ontario, Canada
  • 2 Department of Earth Sciences, Uppsala University, Uppsala, Sweden
  • 3 Pacific Climate Impacts Consortium, University of Victoria, Victoria, British Columbia, Canada
  • 4 Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
  • 5 Department of Geography and Planning, Queen’s University, Kingston, Ontario, Canada
  • 6 Department of Earth Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
  • 7 Arctic Institute of North America, University of Calgary, Calgary, Alberta, Canada
  • 8 Kufstein, Austria
  • 9 Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
© Get Permissions
Restricted access

Abstract

The climate of high midlatitude mountains appears to be warming faster than the global average, but evidence for such elevation-dependent warming (EDW) at higher latitudes is presently scarce. Here, we use a comprehensive network of remote meteorological stations, proximal radiosonde measurements, downscaled temperature reanalysis, ice cores, and climate indices to investigate the manifestation and possible drivers of EDW in the St. Elias Mountains in subarctic Yukon, Canada. Linear trend analysis of comprehensively validated annual downscaled North American Regional Reanalysis (NARR) gridded surface air temperatures for the years 1979–2016 indicates a warming rate of 0.028°C a−1 between 5500 and 6000 m above mean sea level (MSL), which is ~1.6 times larger than the global-average warming rate between 1970 and 2015. The warming rate between 5500 and 6000 m MSL was ~1.5 times greater than the rate at the 2000–2500 m MSL bin (0.019°C a−1), which is similar to the majority of warming rates estimated worldwide over similar elevation gradients. Accelerated warming since 1979, measured by radiosondes, indicates a maximum rate at 400 hPa (~7010 m MSL). EDW in the St. Elias region therefore appears to be driven by recent warming of the free troposphere. MODIS satellite data show no evidence for an enhanced snow albedo feedback above 2500 m MSL, and declining trends in sulfate aerosols deposited in high-elevation ice cores suggest a modest increase in radiative forcing at these elevations. In contrast, increasing trends in water vapor mixing ratio at the 500-hPa level measured by radiosonde suggest that a longwave radiation vapor feedback is contributing to EDW.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Scott N. Williamson, scott.williamson@ualberta.ca

Abstract

The climate of high midlatitude mountains appears to be warming faster than the global average, but evidence for such elevation-dependent warming (EDW) at higher latitudes is presently scarce. Here, we use a comprehensive network of remote meteorological stations, proximal radiosonde measurements, downscaled temperature reanalysis, ice cores, and climate indices to investigate the manifestation and possible drivers of EDW in the St. Elias Mountains in subarctic Yukon, Canada. Linear trend analysis of comprehensively validated annual downscaled North American Regional Reanalysis (NARR) gridded surface air temperatures for the years 1979–2016 indicates a warming rate of 0.028°C a−1 between 5500 and 6000 m above mean sea level (MSL), which is ~1.6 times larger than the global-average warming rate between 1970 and 2015. The warming rate between 5500 and 6000 m MSL was ~1.5 times greater than the rate at the 2000–2500 m MSL bin (0.019°C a−1), which is similar to the majority of warming rates estimated worldwide over similar elevation gradients. Accelerated warming since 1979, measured by radiosondes, indicates a maximum rate at 400 hPa (~7010 m MSL). EDW in the St. Elias region therefore appears to be driven by recent warming of the free troposphere. MODIS satellite data show no evidence for an enhanced snow albedo feedback above 2500 m MSL, and declining trends in sulfate aerosols deposited in high-elevation ice cores suggest a modest increase in radiative forcing at these elevations. In contrast, increasing trends in water vapor mixing ratio at the 500-hPa level measured by radiosonde suggest that a longwave radiation vapor feedback is contributing to EDW.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Scott N. Williamson, scott.williamson@ualberta.ca
Save