• Anderson, G. P., S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, 1986: AFGL atmospheric constituent profiles (0–120 km). Air Force Geophysics Laboratory Tech. Rep. AFGL-TR-86-011, 46 pp.

  • Ångström, K., 1900: Ueber die Bedeutung des Wasserdampfes und der Kohlensäure bei der Absorptionder Erdatmosphäre (On the importance of water vapor and carbonic acid in the absorption of Earth’s atmosphere). Ann. Phys., 308, 720732, https://doi.org/10.1002/andp.19003081208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Archer, D., 2011: Global Warming: Understanding the Forecast. Wiley-Blackwell, 212 pp.

  • Arrhenius, S., 1896: On the influence of carbonic acid in the air upon the temperature of the ground. London Edinburgh Dublin Philos. Mag. J. Sci., 41, 237276, https://doi.org/10.1080/14786449608620846.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Augustsson, T., and V. Ramanathan, 1977: A radiative-convective model study of the CO2 climate problem. J. Atmos. Sci., 34, 448451, https://doi.org/10.1175/1520-0469(1977)034<0448:ARCMSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benestad, R., 2017: A mental picture of the greenhouse effect. Theor. Appl. Climatol., 128, 679688, https://doi.org/10.1007/s00704-016-1732-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charlock, T. P., 1984: CO2 induced climatic change and spectral variations in the outgoing terrestrial infrared radiation. Tellus, 36B, 139148, https://doi.org/10.3402/TELLUSB.V36I3.14884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cherkaoui , M., J.-L. Dufresne, R. Fournier, J.-Y. Grandpeix, and A. Lahellec, 1996: Monte Carlo simulation of radiation in gases with a narrow-band model and a net-exchange formulation. ASME J. Heat Transfer, 118, 401407, https://doi.org/10.1115/1.2825858.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheruy, F., N. Scott, R. Armante, B. Tournier, and A. Chedin, 1995: Contribution to the development of radiative transfer models for high spectral resolution observations in the infrared. J. Quant. Spectrosc. Radiat. Transfer, 53, 597611, https://doi.org/10.1016/0022-4073(95)00026-H.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clough, S., F. Kneizys, and R. Davies, 1989: Line shape and the water vapor continuum. Atmos. Res., 23, 229241, https://doi.org/10.1016/0169-8095(89)90020-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clough, S., and M. J. Iacono, 1995: Line-by-line calculation of atmospheric fluxes and cooling rates: 2. Application to carbon dioxide, ozone, methane, nitrous oxide and the halocarbons. J. Geophys. Res., 100, 16 51916 535, https://doi.org/10.1029/95JD01386.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: Radiative forcing by well-mixed greenhouse gases: Estimates from climate models in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). J. Geophys. Res., 111, D14317, https://doi.org/10.1029/2005JD006713.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costa, S. M. S., and K. P. Shine, 2012: Outgoing longwave radiation due to directly transmitted surface emission. J. Atmos. Sci., 69, 18651870, https://doi.org/10.1175/JAS-D-11-0248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dufresne, J.-L., R. Fournier, C. Hourdin, and F. Hourdin, 2005: Net exchange reformulation of radiative transfer in the CO2 15-μm band on Mars. J. Atmos. Sci., 62, 33033319, https://doi.org/10.1175/JAS3537.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellingson, R. G., J. Ellis, and S. Fels, 1991: The intercomparison of radiation codes used in climate models: Long wave results. J. Geophys. Res., 96, 89298953, https://doi.org/10.1029/90JD01450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eymet, V., C. Coustet, and B. Piaud, 2016: kspectrum: An open-source code for high-resolution molecular absorption spectra production. J. Phys. Conf. Ser., 676, 012005, https://doi.org/10.1088/1742-6596/676/1/012005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forster, P., and Coauthors, 2007: Changes in atmospheric constituents and in radiative forcing. Climate Change 2007: The Scientific Basis, S. Solomon et al., Eds., Cambridge University Press, 129–234.

  • Fourier, J.-B. J., 1824: Remarques générales sur les températures du globe terrestre et des espaces planétaires (General remarks on the temperatures of the terrestrial globe and planetary spaces). Ann. Chim. Phys., 27, 136167.

    • Search Google Scholar
    • Export Citation
  • Fourier, J.-B. J., 1837: General remarks on the temperature of the terrestrial globe and the planetary spaces. Amer. J. Sci., 32 (1), 120.

    • Search Google Scholar
    • Export Citation
  • Green, J. S. A., 1967: Division of radiative streams into internal transfer and cooling to space. Quart. J. Roy. Meteor. Soc., 93, 371372, https://doi.org/10.1002/qj.49709339710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., D. Johnson, A. Lacis, S. Lebedeff, P. Lee, D. Rind, and G. Russell, 1981: Climate impact of increasing atmospheric carbon dioxide. Science, 213, 957966, https://doi.org/10.1126/science.213.4511.957.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, and R. Ruedy, 1997: Radiative forcing and climate response. J. Geophys. Res., 102, 68316864, https://doi.org/10.1029/96JD03436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harries, J. E., H. E. Brindley, P. J. Sagoo, and R. J. Bantges, 2001: Increases in greenhouse forcing inferred from the outgoing longwave radiation spectra of the Earth in 1970 and 1997. Nature, 410, 355357, https://doi.org/10.1038/35066553.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2000: Water vapour feedback and global warming. Annu. Rev. Energy Environ., 25, 441475, https://doi.org/10.1146/annurev.energy.25.1.441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., 2013: A simulated climatology of spectrally decomposed atmospheric infrared radiation. J. Climate, 26, 17021715, https://doi.org/10.1175/JCLI-D-12-00438.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., and M. Bani Shahabadi, 2014: Why logarithmic? A note on the dependence of radiative forcing on gas concentration. J. Geophys. Res. Atmos., 119, 13 68313 689, https://doi.org/10.1002/2014JD022466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., 1983: Satellite detection of effects due to increased atmospheric carbon dioxide. Science, 222, 504506, https://doi.org/10.1126/science.222.4623.504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., and V. Ramanathan, 1983: CO2 radiative parameterization used in climate models: Comparison with narrow band models and with laboratory data. J. Geophys. Res., 88, 51915202, https://doi.org/10.1029/JC088iC09p05191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McClatchey, R. A., R. W. Fenn, J. Selby, and J. Garing, 1972: Optical properties of the atmosphere. Air Force Cambridge Research Laboratory Tech. Rep. AFCRL-72-0497, 3rd ed., 113 pp.

  • Mlawer, E. J., V. H. Payne, J.-L. Moncet, J. S. Delamere, M. J. Alvarado, and D. C. Tobin, 2012: Development and recent evaluation of the MT_CKD model of continuum absorption. Philos. Trans. Roy. Soc., 370A, 25202556, https://doi.org/10.1098/rsta.2011.0295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlynczak, M. G., and Coauthors, 2016: The spectroscopic foundation of radiative forcing of climate by carbon dioxide. Geophys. Res. Lett., 43, 53185325, https://doi.org/10.1002/2016GL068837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 2004: Warming the world: Greenhouse effect: Fourier’s concept of planetary energy balance is still relevant today. Nature, 432, 677, https://doi.org/10.1038/432677a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 2010: Principles of Planetary Climate. Cambridge University Press, 652 pp.

    • Crossref
    • Export Citation
  • Pierrehumbert, R. T., 2011: Infrared radiation and planetary temperature. Phys. Today, 64, 3338, https://doi.org/10.1063/1.3541943.

  • Pincus, R., and Coauthors, 2015: Radiative flux and forcing parameterization error in aerosol-free clear skies. Geophys. Res. Lett., 42, 54855492, https://doi.org/10.1002/2015GL064291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rothman, L. S., and Coauthors, 2013: The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer, 130, 450, https://doi.org/10.1016/j.jqsrt.2013.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwarzkopf, M. D., and S. Fels, 1991: The simplified exchange method revisited: An accurate, rapid method for computation of infrared cooling rates and fluxes. J. Geophys. Res., 96, 90759096, https://doi.org/10.1029/89JD01598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, N. A., and A. Chedin, 1981: A fast line-by-line method for atmospheric absorption computations: The automatized atmospheric absorption atlas. J. Appl. Meteor., 20, 802812, https://doi.org/10.1175/1520-0450(1981)020<0802:AFLBLM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shine, K., Y. Fouquart, V. Ramaswamy, S. Solomon, and J. Srinivasan, 1995: Radiative forcing. Climate Change 1994: Radiative Forcing of Climate Change and Evaluation of the IPCC IS92 Emission Scenarios, J. Houghton et al., Eds., Cambridge University Press, 35–71.

  • Stuber, N., R. Sausen, and M. Ponater, 2001: Stratosphere adjusted radiative forcing calculations in a comprehensive climate model. Theor. Appl. Climatol., 68, 125135, https://doi.org/10.1007/s007040170041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, W., and J. D. Haigh, 2013: The greenhouse effect and carbon dioxide. Weather, 68, 100105, https://doi.org/10.1002/wea.2072.

All Time Past Year Past 30 Days
Abstract Views 228 228 59
Full Text Views 11 11 8
PDF Downloads 16 16 13

Greenhouse Effect: The Relative Contributions of Emission Height and Total Absorption

View More View Less
  • 1 Laboratoire de Météorologie Dynamique/IPSL, CNRS, Sorbonne Université, École Normale Supérieure, PSL Research University, École Polytechnique, Paris, France
  • 2 MesoStar, Toulouse, France
  • 3 Laboratoire de Météorologie Dynamique/IPSL, CNRS, École Polytechnique, Sorbonne Université, École Normale Supérieure, PSL Research University, Paris, France
© Get Permissions
Restricted access

Abstract

Since the 1970s, results from radiative transfer models unambiguously show that an increase in the carbon dioxide (CO2) concentration leads to an increase of the greenhouse effect. However, this robust result is often misunderstood and often questioned. A common argument is that the CO2 greenhouse effect is saturated (i.e., does not increase) as CO2 absorption of an entire atmospheric column, named absorptivity, is saturated. This argument is erroneous first because absorptivity by CO2 is currently not fully saturated and still increases with CO2 concentration and second because a change in emission height explains why the greenhouse effect may increase even if the absorptivity is saturated. However, these explanations are only qualitative. In this article, we first propose a way of quantifying the effects of both the emission height and absorptivity and we illustrate which one of the two dominates for a suite of simple idealized atmospheres. Then, using a line-by-line model and a representative standard atmospheric profile, we show that the increase of the greenhouse effect resulting from an increase of CO2 from its current value is primarily due (about 90%) to the change in emission height. For an increase of water vapor, the change in absorptivity plays a more important role (about 40%) but the change in emission height still has the largest contribution (about 60%).

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: J.-L. Dufresne, jean-louis.dufresne@lmd.jussieu.fr

Abstract

Since the 1970s, results from radiative transfer models unambiguously show that an increase in the carbon dioxide (CO2) concentration leads to an increase of the greenhouse effect. However, this robust result is often misunderstood and often questioned. A common argument is that the CO2 greenhouse effect is saturated (i.e., does not increase) as CO2 absorption of an entire atmospheric column, named absorptivity, is saturated. This argument is erroneous first because absorptivity by CO2 is currently not fully saturated and still increases with CO2 concentration and second because a change in emission height explains why the greenhouse effect may increase even if the absorptivity is saturated. However, these explanations are only qualitative. In this article, we first propose a way of quantifying the effects of both the emission height and absorptivity and we illustrate which one of the two dominates for a suite of simple idealized atmospheres. Then, using a line-by-line model and a representative standard atmospheric profile, we show that the increase of the greenhouse effect resulting from an increase of CO2 from its current value is primarily due (about 90%) to the change in emission height. For an increase of water vapor, the change in absorptivity plays a more important role (about 40%) but the change in emission height still has the largest contribution (about 60%).

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: J.-L. Dufresne, jean-louis.dufresne@lmd.jussieu.fr
Save