• Adames, Á. F., and D. Kim, 2016: The MJO as a dispersive, convectively coupled moisture wave: Theory and observations. J. Atmos. Sci., 73, 913941, https://doi.org/10.1175/JAS-D-15-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christiansen, B., 2019: Analysis of ensemble mean forecasts: The blessings of high dimensionality. Mon. Wea. Rev., 147, 16991712, https://doi.org/10.1175/MWR-D-18-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and G. N. Kiladis, 2014: Skill of the MJO and Northern Hemisphere blocking in GEFS medium-range reforecasts. Mon. Wea. Rev., 142, 868885, https://doi.org/10.1175/MWR-D-13-00199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson, S. A., and E. D. Maloney, 2018: The impact of the Madden–Julian Oscillation on high-latitude winter blocking during El Niño–Southern Oscillation events. J. Climate, 31, 52935318, https://doi.org/10.1175/JCLI-D-17-0721.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson, S. A., E. D. Maloney, and E. A. Barnes, 2016: The influence of the Madden–Julian Oscillation on Northern Hemisphere winter blocking. J. Climate, 29, 45974616, https://doi.org/10.1175/JCLI-D-15-0502.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., M. C. Wheeler, and C. Zhang, 2007: Seasonal dependence of the MJO–ENSO relationship. J. Climate, 20, 531543, https://doi.org/10.1175/JCLI4003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirota, N., and M. Takahashi, 2012: A tripolar pattern as an internal mode of the East Asian summer monsoon. Climate Dyn., 39, 22192238, https://doi.org/10.1007/s00382-012-1416-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671, https://doi.org/10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829, https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., L.-L. Pan, and M. Watanabe, 2006: Dynamics of synoptic eddy and low-frequency flow interaction. Part I: A linear closure. J. Atmos. Sci., 63, 16771694, https://doi.org/10.1175/JAS3715.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamori, H., T. Yasunari, and K. Kuraji, 2013: Modulation of the diurnal cycle of rainfall associated with the MJO observed by a dense hourly rain gauge network at Sarawak, Borneo. J. Climate, 26, 48584875, https://doi.org/10.1175/JCLI-D-12-00158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., 1983: Rossby wave propagation in a barotropic atmosphere. Dyn. Atmos. Oceans, 7, 111125, https://doi.org/10.1016/0377-0265(83)90013-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., H. H. Hendon, and J. D. Glick, 1994: The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden–Julian Oscillation. J. Meteor. Soc, 72, 401412, https://doi.org/10.2151/jmsj1965.72.3_401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2000: Modulation of hurricane activity in the Gulf of Mexico by the Madden–Julian Oscillation. Science, 287, 20022004, https://doi.org/10.1126/science.287.5460.2002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moon, J.-Y., B. Wang, and K.-J. Ha, 2011: ENSO regulation of MJO teleconnection. Climate Dyn., 37, 11331149, https://doi.org/10.1007/s00382-010-0902-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, A. M., and R. Kleeman, 1999: Stochastic forcing of ENSO by the intraseasonal oscillation. J. Climate, 12, 11991220, https://doi.org/10.1175/1520-0442(1999)012<1199:SFOEBT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, R. W., O. Martius, and T. Spengler, 2010: The modulation of the subtropical and extratropical atmosphere in the Pacific basin in response to the Madden–Julian oscillation. Mon. Wea. Rev., 138, 27612779, https://doi.org/10.1175/2010MWR3194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mundhenk, B. D., E. A. Barnes, and E. D. Maloney, 2016: All-season climatology and variability of atmospheric river frequencies over the North Pacific. J. Climate, 29, 48854903, https://doi.org/10.1175/JCLI-D-15-0655.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mundhenk, B. D., E. A. Barnes, E. D. Maloney, and C. F. Baggett, 2018: Skillful subseasonal prediction of atmospheric river activity based on the Madden–Julian Oscillation and the quasi-biennial oscillation. npj Climate Atmos. Sci., 1, 20177, https://doi.org/10.1038/S41612-017-0008-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., and P. D. Sardeshmukh, 1998: The impact of the annual cycle on the North Pacific/North American response to remote low-frequency forcing. J. Atmos. Sci., 55, 13361353, https://doi.org/10.1175/1520-0469(1998)055<1336:TIOTAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pang, B., Z. S. Chen, Z. P. Wen, and R. Y. Lu, 2016: Impacts of two types of El Niño on the MJO during boreal winter. Adv. Atmos. Sci., 33, 979986, https://doi.org/10.1007/s00376-016-5272-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pohl, B., and A. J. Matthews, 2007: Observed changes in the lifetime and amplitude of the Madden–Julian oscillation associated with interannual ENSO sea surface temperature anomalies. J. Climate, 20, 26592674, https://doi.org/10.1175/JCLI4230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P.-D., and B.-J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., and H.-J. Lee, 2017: Mechanisms for a PNA-like teleconnection pattern in response to the MJO. J. Atmos. Sci., 74, 17671781, https://doi.org/10.1175/JAS-D-16-0343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straub, K. H., 2013: MJO initiation in the real-time multivariate MJO index. J. Climate, 26, 11301151, https://doi.org/10.1175/JCLI-D-12-00074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tseng, K.-C., E. A. Barnes, and E. D. Maloney, 2018: Prediction of the midlatitude response to strong Madden–Julian Oscillation events on S2S timescales. Geophys. Res. Lett., 45, 463470, https://doi.org/10.1002/2017GL075734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tseng, K.-C., E. Maloney, and E. Barnes, 2019: The consistency of MJO teleconnection patterns: An explanation using linear Rossby wave theory. J. Climate, 32, 531548, https://doi.org/10.1175/JCLI-D-18-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., 2017: Madden–Julian Oscillation prediction and teleconnections in the S2S database. Quart. J. Roy. Meteor. Soc., 143, 22102220, https://doi.org/10.1002/qj.3079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., and Coauthors, 2017: The Subseasonal to Seasonal (S2S) prediction project database. Bull. Amer. Meteor. Soc., 98, 163173, https://doi.org/10.1175/BAMS-D-16-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and M. Kimoto, 2000: Atmosphere–ocean thermal coupling in the North Atlantic: A positive feedback. Quart. J. Roy. Meteor. Soc., 126, 33433369, https://doi.org/10.1002/qj.49712657017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, Y., and H. Ren, 2019: Modulation of ENSO on fast and slow MJO modes during boreal winter. J. Climate, 32, 74837506, https://doi.org/10.1175/JCLI-D-19-0013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoo, C., and S.-W. Son, 2016: Modulation of the boreal wintertime Madden–Julian Oscillation by the stratospheric quasi-biennial oscillation. Geophys. Res. Lett., 43, 13921398, https://doi.org/10.1002/2016GL067762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoo, C., S. Lee, and S. B. Feldstein, 2012: Mechanisms of Arctic surface air temperature change in response to the Madden–Julian oscillation. J. Climate, 25, 57775790, https://doi.org/10.1175/JCLI-D-11-00566.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 56 56 40
Full Text Views 23 23 14
PDF Downloads 25 25 16

The Consistency of MJO Teleconnection Patterns on Interannual Time Scales

View More View Less
  • 1 Colorado State University, Fort Collins, Colorado
© Get Permissions
Restricted access

Abstract

The Madden–Julian oscillation (MJO) excites strong variations in extratropical geopotential heights that modulate extratropical weather, making the MJO an important predictability source on subseasonal to seasonal time scales (S2S). Previous research demonstrates a strong similarity of teleconnection patterns across MJO events for certain MJO phases (i.e., pattern consistency) and increased model ensemble agreement during these phases that is beneficial for extended numerical weather forecasts. However, the MJO’s ability to modulate extratropical weather varies greatly on interannual time scales, which brings extra uncertainty in leveraging the MJO for S2S prediction. Few studies have investigated the mechanisms responsible for variations in the consistency of MJO tropical–extratropical teleconnections on interannual time scales. This study uses reanalysis data, ensemble simulations of a linear baroclinic model, and a Rossby wave ray tracing algorithm to demonstrate that two mechanisms largely determine the interannual variability of MJO teleconnection consistency. First, the meridional shift of stationary Rossby wave ray paths indicates increases (decreases) in the MJO’s extratropical modulation during La Niña (El Niño) years. Second, a previous study proposed that the constructive interference of Rossby wave signals caused by a dipole Rossby wave source pattern across the subtropical jet during certain MJO phases produces a consistent MJO teleconnection. However, this dipole feature is less clear in both El Niño and La Niña years due to the extension and contraction of MJO convection, respectively, which would decrease the MJO’s influence in the extratropics. Hence, considering the joint influence of the basic state and MJO forcing, this study suggests a diminished potential to leverage the MJO for S2S prediction in El Niño years.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kai-Chih Tseng, kctseng@rams.colostate.edu

Abstract

The Madden–Julian oscillation (MJO) excites strong variations in extratropical geopotential heights that modulate extratropical weather, making the MJO an important predictability source on subseasonal to seasonal time scales (S2S). Previous research demonstrates a strong similarity of teleconnection patterns across MJO events for certain MJO phases (i.e., pattern consistency) and increased model ensemble agreement during these phases that is beneficial for extended numerical weather forecasts. However, the MJO’s ability to modulate extratropical weather varies greatly on interannual time scales, which brings extra uncertainty in leveraging the MJO for S2S prediction. Few studies have investigated the mechanisms responsible for variations in the consistency of MJO tropical–extratropical teleconnections on interannual time scales. This study uses reanalysis data, ensemble simulations of a linear baroclinic model, and a Rossby wave ray tracing algorithm to demonstrate that two mechanisms largely determine the interannual variability of MJO teleconnection consistency. First, the meridional shift of stationary Rossby wave ray paths indicates increases (decreases) in the MJO’s extratropical modulation during La Niña (El Niño) years. Second, a previous study proposed that the constructive interference of Rossby wave signals caused by a dipole Rossby wave source pattern across the subtropical jet during certain MJO phases produces a consistent MJO teleconnection. However, this dipole feature is less clear in both El Niño and La Niña years due to the extension and contraction of MJO convection, respectively, which would decrease the MJO’s influence in the extratropics. Hence, considering the joint influence of the basic state and MJO forcing, this study suggests a diminished potential to leverage the MJO for S2S prediction in El Niño years.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kai-Chih Tseng, kctseng@rams.colostate.edu
Save