• Abarca, S. F., K. L. Corbosiero, and T. J. Galarneau, 2010: An evaluation of the Worldwide Lightning Location Network (WWLLN) using the National Lightning Detection Network (NLDN) as ground truth. J. Geophys. Res., 115, D18206, https://doi.org/10.1029/2009JD013411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abatzoglou, J. T., and T. J. Brown, 2009: Influence of the Madden–Julian oscillation on summertime cloud-to-ground lightning activity over the continental United States. Mon. Wea. Rev., 137, 35963601, https://doi.org/10.1175/2009MWR3019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abatzoglou, J. T., C. A. Kolden, J. K. Balch, and B. A. Bradley, 2016: Controls on interannual variability in lightning-caused fire activity in the western US. Environ. Res. Lett., 11, 045005, https://doi.org/10.1088/1748-9326/11/4/045005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adams, D. K., and E. P. Souza, 2009: CAPE and convective events in the southwest during the North American monsoon. Mon. Wea. Rev., 137, 8398, https://doi.org/10.1175/2008MWR2502.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balch, J. K., B. A. Bradley, J. T. Abatzoglou, R. C. Nagy, E. J. Fusco, and A. L. Mahood, 2017: Human-started wildfires expand the fire niche across the United States. Proc. Natl. Acad. Sci. USA, 114, 29462951, https://doi.org/10.1073/pnas.1617394114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlow, M., S. Nigam, and E. H. Berbery, 1998: Evolution of the North American monsoon system. J. Climate, 11, 22382257, https://doi.org/10.1175/1520-0442(1998)011<2238:EOTNAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burrows, W. R., C. Price, and L. J. Wilson, 2005: Warm season lightning probability prediction for Canada and the northern United States. Wea. Forecasting, 20, 971988, https://doi.org/10.1175/WAF895.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiodi, A. M., N. A. Bond, N. K. Larkin, and R. J. Barbour, 2016: Summertime rainfall events in eastern Washington and Oregon. Wea. Forecasting, 31, 14651480, https://doi.org/10.1175/WAF-D-16-0024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., and M. J. Murphy, 2009: An overview of lightning locating systems: History, techniques, and data uses, with an in-depth look at the U.S. NLDN. IEEE Trans. Electromagn. Compat., 51, 499518, https://doi.org/10.1109/TEMC.2009.2023450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., D. R. Cayan, and T. J. Brown, 1999: Summertime intraseasonal and interannual lightning variations in the western United States. Proc. 24th Annual NOAA Climate Diagnostics and Prediction Workshop, Tucson, AZ, NOAA, 57–60.

  • Favors, J. E., and J. T. Abatzoglou, 2013: Regional surges of monsoonal moisture into the southwestern United States. Mon. Wea. Rev., 141, 182191, https://doi.org/10.1175/MWR-D-12-00037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hales, J. E., 1977: On the relationship of convective cooling to nocturnal thunderstorms at Phoenix. Mon. Wea. Rev., 105, 16091613, https://doi.org/10.1175/1520-0493(1977)105<1609:OTROCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., W. Shi, and C. Hain, 2004: Relationships between Gulf of California moisture surges and precipitation in the southwestern United States. J. Climate, 17, 29832997, https://doi.org/10.1175/1520-0442(2004)017<2983:RBGOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoogewind, K. A., M. E. Baldwin, and R. J. Trapp, 2017: The impact of climate change on hazardous convective weather in the United States: Insight from high-resolution dynamical downscaling. J. Climate, 30, 10 08110 100, https://doi.org/10.1175/JCLI-D-16-0885.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krawchuk, M. A., M. A. Moritz, M.-A. Parisien, J. Van Dorn, and K. Hayhoe, 2009: Global pyrogeography: The current and future distribution of wildfire. PLOS ONE, 4, e5102, https://doi.org/10.1371/journal.pone.0005102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loikith, P. C., and A. J. Broccoli, 2012: Characteristics of observed atmospheric circulation patterns associated with temperature extremes over North America. J. Climate, 25, 72667281, https://doi.org/10.1175/JCLI-D-11-00709.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and D. L. Hartmann, 2006: The effect of the MJO on the North American monsoon. J. Climate, 19, 333343, https://doi.org/10.1175/JCLI3684.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magi, B. I., 2015: Global lightning parameterization from CMIP5 climate model output. J. Atmos. Oceanic Technol., 32, 434452, https://doi.org/10.1175/JTECH-D-13-00261.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milne, R., 2004: A modified total totals index for thunderstorm potential over the Intermountain West. NWS WR Tech. Attachment 04-04, 15 pp., https://www.weather.gov/media/wrh/online_publications/TAs/ta0404.pdf.

  • Nash, C. H., and E. A. Johnson, 1996: Synoptic climatology of lightning-caused forest fires in subalpine and boreal forests. Can. J. For. Res., 26, 18591874, https://doi.org/10.1139/x26-211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nauslar, N. J., B. J. Hatchett, T. J. Brown, M. L. Kaplan, and J. F. Mejia, 2019: Impact of the North American monsoon on wildfire activity in the southwest United States. Int. J. Climatol., 39, 15391554, https://doi.org/10.1002/joc.5899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orville, R. E., 2008: Development of the National Lightning Detection Network. Bull. Amer. Meteor. Soc., 89, 180190, https://doi.org/10.1175/BAMS-89-2-180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, C., 2009: Thunderstorms, lightning and climate change. Lightning: Principles, Instruments and Applications: Review of Modern Lightning Research, H. D. Betz, U. Schumann, and P. Laroche, Eds., Springer, 521–535.

    • Crossref
    • Export Citation
  • Price, C., and D. Rind, 1992: A simple lightning parameterization for calculating global lightning distributions. J. Geophys. Res., 97, 99199933, https://doi.org/10.1029/92JD00719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D. M., J. T. Seeley, D. Vollaro, and J. Molinari, 2014: Projected increase in lightning strikes in the United States due to global warming. Science, 346, 851854, https://doi.org/10.1126/science.1259100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rorig, M. L., and S. A. Ferguson, 1999: Characteristics of lightning and wildland fire ignition in the Pacific Northwest. J. Appl. Meteor., 38, 15651575, https://doi.org/10.1175/1520-0450(1999)038<1565:COLAWF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rorig, M. L., S. J. McKay, S. A. Ferguson, and P. Werth, 2007: Model-generated predictions of dry thunderstorm potential. J. Appl. Meteor. Climatol., 46, 605614, https://doi.org/10.1175/JAM2482.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Wagtendonk, J. W., and D. R. Cayan, 2008: Temporal and spatial distribution of lightning strikes in California in relation to large-scale weather patterns. Fire Ecol., 4, 3456, https://doi.org/10.4996/fireecology.0401034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., and J. A. Smith, 2013: Spatial and temporal variability of cloud-to-ground lightning over the continental U.S. during the period 1995–2010. Atmos. Res., 124, 137148, https://doi.org/10.1016/j.atmosres.2012.12.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watson, A. I., R. L. Holle, and R. E. Lopéz, 1994: Cloud-to-ground lightning and upper-air patterns during bursts and breaks in the southwest monsoon. Mon. Wea. Rev., 122, 17261739, https://doi.org/10.1175/1520-0493(1994)122<1726:CTGLAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Werth, P., and R. Ochoa, 1993: The evaluation of Idaho wildfire growth using the Haines index. Wea. Forecasting, 8, 223234, https://doi.org/10.1175/1520-0434(1993)008<0223:TEOIWG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 24 24 13
Full Text Views 6 6 5
PDF Downloads 11 11 11

A 30-Yr Climatology of Meteorological Conditions Associated with Lightning Days in the Interior Western United States

View More View Less
  • 1 Department of Geography, Portland State University, Portland, Oregon
  • 2 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
  • 3 Department of Geography, University of Idaho, Moscow, Idaho, and Management of Complex Systems Department, University of California, Merced, Merced, California
© Get Permissions
Restricted access

Abstract

A 30-yr climatology of lightning days and associated synoptic meteorological patterns are characterized across the interior western United States (WUS). Locally centered composite analyses show preferred synoptic meteorological patterns with positive 500-hPa geopotential height anomalies located to the northeast and negative sea level pressure anomalies to the northwest and collocated with local lightning days. Variations in preferred patterns for local lightning days are seen across the interior WUS. Areas not commonly affected by the North American monsoon system including the western Great Basin and northern Rocky Mountains show higher-amplitude anomalies of geopotential height, moisture, and midtropospheric instability patterns suggesting the importance of episodic midlatitude dynamics to lightning days in such locations. By contrast, locations closer to the core of the North American monsoon show weaker anomalies, likely reflecting the prevalence of favorable mesoscale dynamics key to lightning production during warm-season months in locations in the interior Southwest. Meteorological patterns for select locations are explored in more detail and two case studies of notably active lightning events are presented. Results from this observational analysis provide a foundation for evaluating meteorological conditions on lightning days in climate model simulations for the interior WUS.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-19-0564.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dmitri A. Kalashnikov, dmitri4@pdx.edu

Abstract

A 30-yr climatology of lightning days and associated synoptic meteorological patterns are characterized across the interior western United States (WUS). Locally centered composite analyses show preferred synoptic meteorological patterns with positive 500-hPa geopotential height anomalies located to the northeast and negative sea level pressure anomalies to the northwest and collocated with local lightning days. Variations in preferred patterns for local lightning days are seen across the interior WUS. Areas not commonly affected by the North American monsoon system including the western Great Basin and northern Rocky Mountains show higher-amplitude anomalies of geopotential height, moisture, and midtropospheric instability patterns suggesting the importance of episodic midlatitude dynamics to lightning days in such locations. By contrast, locations closer to the core of the North American monsoon show weaker anomalies, likely reflecting the prevalence of favorable mesoscale dynamics key to lightning production during warm-season months in locations in the interior Southwest. Meteorological patterns for select locations are explored in more detail and two case studies of notably active lightning events are presented. Results from this observational analysis provide a foundation for evaluating meteorological conditions on lightning days in climate model simulations for the interior WUS.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-19-0564.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dmitri A. Kalashnikov, dmitri4@pdx.edu

Supplementary Materials

    • Supplemental Materials (PDF 485.76 KB)
Save