• Anderson, J. L., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. O. Avellano, 2009: The Data Assimilation Research Testbed: A community facility. Bull. Amer. Meteor. Soc., 90, 12831296, https://doi.org/10.1175/2009BAMS2618.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, A., S. Milton, M. Cullen, B. Golding, J. Mitchell, and A. Shelly, 2012: Unified modeling and prediction of weather and climate. Bull. Amer. Meteor. Soc., 93, 18651877, https://doi.org/10.1175/BAMS-D-12-00018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • da Silveira, I. P., P. Zuidema, and B. P. Kirtman, 2019: Fast SST error growth in the southeast Pacific Ocean: Comparison between high and low-resolution CCSM4 retrospective forecasts. Climate Dyn., 53, 52375251, https://doi.org/10.1007/s00382-019-04855-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553828, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., and S.-P. Xie, 2008: The tropical eastern Pacific seasonal cycle: Assessment of errors and mechanisms in IPCC AR4 coupled ocean–atmosphere general circulation models. J. Climate, 21, 25732590, https://doi.org/10.1175/2007JCLI1975.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and et al. , 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, https://doi.org/10.1175/2011JCLI4083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and et al. , 2009: Coordinated Ocean-ice Reference Experiments (COREs). Ocean Modell., 26, 146, https://doi.org/10.1016/j.ocemod.2008.08.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., V. Guemas, B. Wouters, S. Corti, I. Andreu-Burillo, F. J. Doblas-Reyes, K. Wyser, and M. Caian, 2013: Multiyear climate predictions using two initialization strategies. Geophys. Res. Lett., 40, 17941798, https://doi.org/10.1002/grl.50355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hermanson, L., and et al. , 2018: Different types of drifts in two seasonal forecast systems and their dependence on ENSO. Climate Dyn., 51, 14111426, https://doi.org/10.1007/s00382-017-3962-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., Z.-Z. Hu, and B. Jha, 2007: Evolution of model systematic errors in the tropical Atlantic Basin from coupled climate hindcasts. Climate Dyn., 28, 661682, https://doi.org/10.1007/s00382-006-0223-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and et al. , 2014: Climate drift of AMOC, North Atlantic salinity and Arctic sea ice in CFSv2 decadal predictions. Climate Dyn., 44, 559583, https://doi.org/10.1007/s00382-014-2395-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J., G. A. Meehl, D. Bader, T. L. Delworth, B. Kirtman, and B. Wielicki, 2009: A unified modeling approach to climate system prediction. Bull. Amer. Meteor. Soc., 90, 18191832, https://doi.org/10.1175/2009BAMS2752.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J., and et al. , 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, D., T. Boyer, H. Garcia, R. Locarnini, O. Baranova, and M. Zweng, 2009: World Ocean database 2009 documentation. NODC Internal Rep. 20, 175 pp.

    • Search Google Scholar
    • Export Citation
  • Karspeck, A. R., S. Yeager, G. Danabasoglu, T. Hoar, N. Collins, K. Raeder, J. L. Anderson, and J. Tribbia, 2013: An ensemble adjustment Kalman filter for the CCSM4 ocean component. J. Climate, 26, 73927413, https://doi.org/10.1175/JCLI-D-12-00402.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and et al. , 2014: The North American Multimodel Ensemble: Phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction. Bull. Amer. Meteor. Soc., 95, 585601, https://doi.org/10.1175/BAMS-D-12-00050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J., Y. Xue, F. D. Sales, I. Diallo, L. Marx, M. Ek, K. R. Sperber, and P. J. Gleckler, 2019: Evaluation of multi-decadal UCLA-CFSv2 simulation and impact of interactive atmospheric–ocean feedback on global and regional variability. Climate Dyn., 52, 36833707, https://doi.org/10.1007/s00382-018-4351-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMS: Ocean–atmosphere feedback analysis. J. Climate, 20, 44974525, https://doi.org/10.1175/JCLI4272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H., M. Zhang, and W. Lin, 2012: An investigation of the initial development of the double-ITCZ warm SST biases in the CCSM. J. Climate, 25, 140155, https://doi.org/10.1175/2011JCLI4001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, H.-Y., S. Xie, J. S. Boyle, S. A. Klein, and Y. Zhang, 2013: Metrics and diagnostics for precipitation-related processes in climate model short-range hindcasts. J. Climate, 26, 15161534, https://doi.org/10.1175/JCLI-D-12-00235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, H.-Y., and et al. , 2014: On the correspondence between mean forecast errors and climate errors in CMIP5 models. J. Climate, 27, 17811798, https://doi.org/10.1175/JCLI-D-13-00474.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, H.-Y., and et al. , 2015: An improved hindcast approach for evaluation and diagnosis of physical processes in global climate models. J. Adv. Model. Earth Syst., 7, 18101827, https://doi.org/10.1002/2015MS000490.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, G. M., S. F. Milton, C. A. Senior, M. E. Brooks, S. Ineson, T. Reichler, and J. Kim, 2010: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. J. Climate, 23, 59335957, https://doi.org/10.1175/2010JCLI3541.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mechoso, C. R., and et al. , 1995: The seasonal cycle over the tropical Pacific in coupled ocean–atmosphere general circulation models. Mon. Wea. Rev., 123, 28252838, https://doi.org/10.1175/1520-0493(1995)123<2825:TSCOTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merryfield, W. J., and et al. , 2013: The Canadian Seasonal to Interannual Prediction System. Part I: Models and initialization. Mon. Wea. Rev., 141, 29102945, https://doi.org/10.1175/MWR-D-12-00216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, H., and et al. , 2015: Simulation and prediction of category 4 and 5 hurricanes in the high-resolution GFDL HiFLOR coupled climate model. J. Climate, 28, 90589079, https://doi.org/10.1175/JCLI-D-15-0216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., 1991: The slow sea surface temperature mode and the fast-wave limit: Analytic theory for tropical interannual oscillations and experiments in a hybrid coupled model. J. Atmos. Sci., 48, 584606, https://doi.org/10.1175/1520-0469(1991)048<0584:TSSSTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nigam, S., and Y. Chao, 1996: Evolution dynamics of tropical ocean–atmosphere annual cycle variability. J. Climate, 9, 31873205, https://doi.org/10.1175/1520-0442(1996)009<3187:EDOTOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., F. J. Doblas-Reyes, A. Weisheimer, and M. J. Rodwell, 2008: Toward seamless prediction: Calibration of climate change projections using seasonal forecasts. Bull. Amer. Meteor. Soc., 89, 459470, https://doi.org/10.1175/BAMS-89-4-459.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, T. J., and et al. , 2004: Evaluating parameterizations in general circulation models: Climate simulation meets weather prediction. Bull. Amer. Meteor. Soc., 85, 19031916, https://doi.org/10.1175/BAMS-85-12-1903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raeder, K., J. L. Anderson, N. Collins, T. Hoar, J. Kay, P. Lauritzen, and R. Pincus, 2012: DART/CAM: An ensemble data assimilation system for CESM atmospheric models. J. Climate, 25, 63046317, https://doi.org/10.1175/JCLI-D-11-00395.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, I., 2015: Climate model biases in the eastern tropical oceans: Causes, impacts and ways forward. Wiley Interdiscip. Rev.: Climate Change, 6, 345358, https://doi.org/10.1002/wcc.338.

    • Search Google Scholar
    • Export Citation
  • Richter, I., T. Doi, S. K. Behera, and N. Keenlyside, 2018: On the link between mean state biases and prediction skill in the tropics: An atmospheric perspective. Climate Dyn., 50, 33553374, https://doi.org/10.1007/s00382-017-3809-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanchez-Gomez, E., C. Cassou, Y. Ruprich-Robert, E. Fernandez, and L. Terray, 2016: Drift dynamics in a coupled model initialized for decadal forecasts. Climate Dyn., 46, 18191840, https://doi.org/10.1007/s00382-015-2678-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shonk, J. K. P., E. Guilyardi, T. Toniazzo, S. J. Woolnough, and T. Stockdale, 2018: Identifying causes of western Pacific ITCZ drift in ECMWF system 4 hindcasts. Climate Dyn., 50, 939954, https://doi.org/10.1007/s00382-017-3650-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siongco, A. C., H.-Y. Ma, S. A. Klein, S. Xie, A. R. Karspeck, K. Raeder, and J. L. Anderson, 2020: A hindcast approach to diagnosing the equatorial Pacific cold tongue SST bias in CESM1. J. Climate, 33, 14371453, https://doi.org/10.1175/JCLI-D-19-0513.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, X., and G. J. Zhang, 2018: The roles of convection parameterization in the formation of double ITCZ syndrome in the NCAR CESM: I. Atmospheric processes. J. Adv. Model. Earth Syst., 10, 842866, https://doi.org/10.1002/2017MS001191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toniazzo, T., and S. Woolnough, 2014: Development of warm SST errors in the southern tropical Atlantic in CMIP5 decadal hindcasts. Climate Dyn., 43, 28892913, https://doi.org/10.1007/s00382-013-1691-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vannière, B., E. Guilyardi, G. Madec, F. J. Doblas-Reyes, and S. Woolnough, 2013: Using seasonal hindcasts to understand the origin of the equatorial cold tongue bias in CGCMs and its impact on ENSO. Climate Dyn., 40, 963981, https://doi.org/10.1007/s00382-012-1429-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vannière, B., E. Guilyardi, T. Toniazzo, G. Madec, and S. Woolnough, 2014: A systematic approach to identify the sources of tropical SST errors in coupled models using the adjustment of initialized experiments. Climate Dyn., 43, 22612282, https://doi.org/10.1007/s00382-014-2051-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and et al. , 2014: On the seasonal forecasting of regional tropical cyclone activity. J. Climate, 27, 79948016, https://doi.org/10.1175/JCLI-D-14-00158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voldoire, A., M. Claudon, G. Caniaux, H. Giordani, and R. Roehrig, 2014: Are atmospheric biases responsible for the tropical Atlantic SST biases in the CNRM-CM5 coupled model? Climate Dyn., 43, 29632984, https://doi.org/10.1007/s00382-013-2036-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voldoire, A., and et al. , 2019: Role of wind stress in driving SST biases in the tropical Atlantic. Climate Dyn., 53, 34813504, https://doi.org/10.1007/s00382-019-04717-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., L. Zhang, S.-K. Lee, L. Wu, and C. R. Mechoso, 2014: A global perspective on CMIP5 climate model biases. Nat. Climate Change, 4, 201205, https://doi.org/10.1038/nclimate2118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., and J. A. Carton, 2002: Seasonal heat budgets of the North Pacific and North Atlantic Oceans. J. Phys. Oceanogr., 32, 34743489, https://doi.org/10.1175/1520-0485(2002)032<3474:SHBOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, K. D., and et al. , 2013: The transpose-AMIP II experiment and its application to the understanding of Southern Ocean cloud biases in climate models. J. Climate, 26, 32583274, https://doi.org/10.1175/JCLI-D-12-00429.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S., H.-Y. Ma, J. S. Boyle, S. A. Klein, and Y. Zhang, 2012: On the correspondence between short- and long- timescale systematic errors in CAM4/CAM5 for the Years of Tropical Convection. J. Climate, 25, 79377955, https://doi.org/10.1175/JCLI-D-12-00134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, S., M. J. Harrison, A. Rosati, and A. T. Wittenberg, 2007: System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies. Mon. Wea. Rev., 135, 35413564, https://doi.org/10.1175/MWR3466.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., H. Liu, and M. Zhang, 2015: Double ITCZ in coupled ocean–atmosphere models: From CMIP3 to CMIP5. Geophys. Res. Lett., 42, 86518659, https://doi.org/10.1002/2015GL065973.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuidema, P., and et al. , 2016: Challenges and prospects for reducing coupled climate model SST biases in the eastern tropical Atlantic and Pacific Oceans: The U.S. CLIVAR Eastern Tropical Oceans Synthesis Working Group. Bull. Amer. Meteor. Soc., 97, 23052328, https://doi.org/10.1175/BAMS-D-15-00274.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 214 214 10
Full Text Views 208 208 38
PDF Downloads 182 182 41

On the Correspondence between Seasonal Forecast Biases and Long-Term Climate Biases in Sea Surface Temperature

View More View Less
  • 1 a Lawrence Livermore National Laboratory, Livermore, California
  • | 2 b Jupiter, Boulder, Colorado
  • | 3 c National Center for Atmospheric Research, Boulder, Colorado
  • | 4 d Rosenstiel School for Marine and Atmospheric Science, University of Miami, Miami, Florida
  • | 5 e Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, Victoria, British Columbia, Canada
  • | 6 f National Oceanic and Atmospheric Administration/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
  • | 7 g University Corporation for Atmospheric Research, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

The correspondence between mean sea surface temperature (SST) biases in retrospective seasonal forecasts (hindcasts) and long-term climate simulations from five global climate models is examined to diagnose the degree to which systematic SST biases develop on seasonal time scales. The hindcasts are from the North American Multimodel Ensemble, and the climate simulations are from the Coupled Model Intercomparison Project. The analysis suggests that most robust climatological SST biases begin to form within 6 months of a realistically initialized integration, although the growth rate varies with location, time, and model. In regions with large biases, interannual variability and ensemble spread is much smaller than the climatological bias. Additional ensemble hindcasts of the Community Earth System Model with a different initialization method suggest that initial conditions do matter for the initial bias growth, but the overall global bias patterns are similar after 6 months. A hindcast approach is more suitable to study biases over the tropics and subtropics than over the extratropics because of smaller initial biases and faster bias growth. The rapid emergence of SST biases makes it likely that fast processes with time scales shorter than the seasonal time scales in the atmosphere and upper ocean are responsible for a substantial part of the climatological SST biases. Studying the growth of biases may provide important clues to the causes and ultimately the amelioration of these biases. Further, initialized seasonal hindcasts can profitably be used in the development of high-resolution coupled ocean–atmosphere models.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hsi-Yen Ma, hyma68@gmail.com; ma21@llnl.gov

Abstract

The correspondence between mean sea surface temperature (SST) biases in retrospective seasonal forecasts (hindcasts) and long-term climate simulations from five global climate models is examined to diagnose the degree to which systematic SST biases develop on seasonal time scales. The hindcasts are from the North American Multimodel Ensemble, and the climate simulations are from the Coupled Model Intercomparison Project. The analysis suggests that most robust climatological SST biases begin to form within 6 months of a realistically initialized integration, although the growth rate varies with location, time, and model. In regions with large biases, interannual variability and ensemble spread is much smaller than the climatological bias. Additional ensemble hindcasts of the Community Earth System Model with a different initialization method suggest that initial conditions do matter for the initial bias growth, but the overall global bias patterns are similar after 6 months. A hindcast approach is more suitable to study biases over the tropics and subtropics than over the extratropics because of smaller initial biases and faster bias growth. The rapid emergence of SST biases makes it likely that fast processes with time scales shorter than the seasonal time scales in the atmosphere and upper ocean are responsible for a substantial part of the climatological SST biases. Studying the growth of biases may provide important clues to the causes and ultimately the amelioration of these biases. Further, initialized seasonal hindcasts can profitably be used in the development of high-resolution coupled ocean–atmosphere models.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hsi-Yen Ma, hyma68@gmail.com; ma21@llnl.gov
Save