• Alexander, M. A., L. Matrosova, C. Penland, J. D. Scott, and P. Chang, 2008: Forecasting Pacific SSTs: Linear inverse model predictions of the PDO. J. Climate, 21, 385402, https://doi.org/10.1175/2007JCLI1849.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amaya, D. J., 2019: The Pacific meridional mode and ENSO: A review. Curr. Climate Change Rep., 5, 296307, https://doi.org/10.1007/s40641-019-00142-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and P. D. Sardeshmukh, 2015: Optimal precursors of different types of ENSO events. Geophys. Res. Lett., 42, 99529960, https://doi.org/10.1002/2015GL066171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and P. D. Sardeshmukh, 2017: Is El Niño really changing? Geophys. Res. Lett., 44, 85488556, https://doi.org/10.1002/2017GL074515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., P. D. Sardeshmukh, and L. Ricciardulli, 2018: The nature of the stochastic wind forcing of ENSO. J. Climate, 31, 80818099, https://doi.org/10.1175/JCLI-D-17-0842.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavanaugh, N. R., T. Allen, A. Subramanian, B. Mapes, H. Seo, and A. J. Miller, 2014: The skill of atmospheric linear inverse models in hindcasting the Madden–Julian oscillation. Climate Dyn., 44, 897906, https://doi.org/10.1007/s00382-014-2181-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., and J. M. Wallace, 2015: ENSO-like variability: 1900–2013. J. Climate, 28, 96239641, https://doi.org/10.1175/JCLI-D-15-0322.1.

  • Chung, C. T. Y., S. B. Power, A. Sullivan, and F. Delage, 2019: The role of the South Pacific in modulating tropical Pacific variability. Sci. Rep., 9, 18311, https://doi.org/10.1038/s41598-019-52805-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674, https://doi.org/10.1175/JCLI3629.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., and M. D. Ohman, 2013: A double-integration hypothesis to explain ocean ecosystem response to climate forcing. Proc. Natl. Acad. Sci. USA, 110, 24962499, https://doi.org/10.1073/pnas.1218022110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, R., J. Li, and Y. Tseng, 2014: The impact of South Pacific extratropical forcing on ENSO and comparisons with the North Pacific. Climate Dyn., 44, 20172034, https://doi.org/10.1007/s00382-014-2303-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folland, C. K., D. E. Parker, A. W. Colman, and R. Washington, 1999: Large scale modes of ocean surface temperature since the late nineteenth century. Beyond El Niño, A. Navarra, Ed., Springer, 73–102.

    • Crossref
    • Export Citation
  • Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate models, Part II. Application to sea-surface temperature anomalies and thermocline variability. Tellus, 29, 289305, https://doi.org/10.3402/tellusa.v29i4.11362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gehne, M., R. Kleeman, and K. E. Trenberth, 2014: Irregularity and decadal variation in ENSO: A simplified model based on principal oscillation patterns. Climate Dyn., 43, 33273350, https://doi.org/10.1007/s00382-014-2108-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2009: Coordinated Ocean-Ice Reference Experiments (COREs). Ocean Modell., 26 (1–2), 146, https://doi.org/10.1016/j.ocemod.2008.08.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1976: Stochastic climate models Part I. Theory. Tellus, 28, 473485, https://doi.org/10.3402/tellusa.v28i6.11316.

  • Huddart, B., A. Subramanian, L. Zanna, and T. Palmer, 2016: Seasonal and decadal forecasts of Atlantic sea surface temperatures using a linear inverse model. Climate Dyn., 49, 18331845, https://doi.org/10.1007/s00382-016-3375-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, S. M., K. V. Pegion, and B. P. Kirtman, 2018: The South Pacific meridional mode as a thermally driven source of ENSO amplitude modulation and uncertainty. J. Climate, 31, 51275145, https://doi.org/10.1175/JCLI-D-17-0722.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liguori, G., and E. Di Lorenzo, 2019: Separating the North and South Pacific meridional modes contributions to ENSO and tropical decadal variability. Geophys. Res. Lett., 46, 906915, https://doi.org/10.1029/2018GL080320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., and E. Di Lorenzo, 2018: Mechanisms and predictability of Pacific decadal variability. Curr. Climate Change Rep., 4, 128144, https://doi.org/10.1007/s40641-018-0090-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lou, J., N. J. Holbrook, and T. J. O’Kane, 2019: South Pacific decadal climate variability and potential predictability. J. Climate, 32, 60516069, https://doi.org/10.1175/JCLI-D-18-0249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lou, J., T. J. O’Kane, and N. J. Holbrook, 2020: A linear inverse model of tropical and South Pacific seasonal predictability. J. Climate, 33, 45374554, https://doi.org/10.1175/JCLI-D-19-0548.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, F., Z. Liu, Y. Liu, S. Zhang, and R. Jacob, 2016: Understanding the control of extratropical atmospheric variability on ENSO using a coupled data assimilation approach. Climate Dyn., 48, 31393160, https://doi.org/10.1007/s00382-016-3256-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maharaj, A. M., P. Cipollini, and N. J. Holbrook, 2005: Observed variability of the South Pacific westward sea level anomaly signal in the presence of bottom topography. Geophys. Res. Lett., 32, L04611, https://doi.org/10.1029/2004GL020966.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691080, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., 2000: Relationships between low-frequency variability in the Southern Hemisphere and sea surface temperature anomalies. J. Climate, 13, 35993610, https://doi.org/10.1175/1520-0442(2000)013<3599:RBLFVI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., 2007: Interannual to decadal predictability of tropical and North Pacific sea surface temperatures. J. Climate, 20, 23332356, https://doi.org/10.1175/JCLI4165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., G. P. Compo, and M. A. Alexander, 2003: ENSO-forced variability of the Pacific decadal oscillation. J. Climate, 16, 38533857, https://doi.org/10.1175/1520-0442(2003)016<3853:EVOTPD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., M. A. Alexander, and J. D. Scott, 2011: An empirical model of tropical ocean dynamics. Climate Dyn., 37, 18231841, https://doi.org/10.1007/s00382-011-1034-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Kane, T. J., R. J. Matear, M. A. Chamberlain, E. C. J. Oliver, and N. J. Holbrook, 2014: Storm tracks in the Southern Hemisphere subtropical oceans. J. Geophys. Res. Oceans, 119, 60786100, https://doi.org/10.1002/2014JC009990.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Kane, T. J., D. P. Monselesan, and J. S. Risbey, 2017: A multiscale reexamination of the Pacific–South American pattern. Mon. Wea. Rev., 145, 379402, https://doi.org/10.1175/MWR-D-16-0291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., 2013: Origins of tropical Pacific decadal variability: Role of stochastic atmospheric forcing from the South Pacific. J. Climate, 26, 97919796, https://doi.org/10.1175/JCLI-D-13-00448.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., and L. Zanna, 2013: Singular vectors, predictability and ensemble forecasting for weather and climate. J. Phys., 46A, 254018, https://doi.org/10.1088/1751-8113/46/25/254018.

    • Search Google Scholar
    • Export Citation
  • Penland, C., and T. Magorian, 1993: Prediction of Niño 3 sea surface temperatures using linear inverse modeling. J. Climate, 6, 10671076, https://doi.org/10.1175/1520-0442(1993)006<1067:PONSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penland, C., and P. D. Sardeshmukh, 1995: The optimal growth of tropical sea surface temperature anomalies. J. Climate, 8, 19992024, https://doi.org/10.1175/1520-0442(1995)008<1999:TOGOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penland, C., and L. Matrosova, 2006: Studies of El Niño and interdecadal variability in tropical sea surface temperatures using a nonnormal filter. J. Climate, 19, 57965815, https://doi.org/10.1175/JCLI3951.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penland, C., and L. M. Hartten, 2014: Stochastic forcing of north tropical Atlantic sea surface temperatures by the North Atlantic oscillation. Geophys. Res. Lett., 41, 21262132, https://doi.org/10.1002/2014GL059252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Power, S., and R. Colman, 2006: Multi-year predictability in a coupled general circulation model. Climate Dyn., 26, 247272, https://doi.org/10.1007/s00382-005-0055-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schnur, R., G. Schmitz, N. Grieger, and H. V. Storch, 1993: Normal modes of the atmosphere as estimated by principal oscillation patterns and derived from quasigeostrophic theory. J. Atmos. Sci., 50, 23862400, https://doi.org/10.1175/1520-0469(1993)050<2386:NMOTAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shakun, J. D., and J. Shaman, 2009: Tropical origins of North and South Pacific decadal variability. Geophys. Res. Lett., 36, L19711, https://doi.org/10.1029/2009GL040313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, E. E., D. J. Vimont, M. Newman, C. Penland, and C. Martínez-Villalobos, 2018: The role of stochastic forcing in generating ENSO diversity. J. Climate, 31, 91259150, https://doi.org/10.1175/JCLI-D-17-0582.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., M. A. Alexander, and M. Newman, 2014: Optimal growth of central and east Pacific ENSO events. Geophys. Res. Lett., 41, 40274034, https://doi.org/10.1002/2014GL059997.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Storch, H., and J. Xu, 1990: Principal oscillation pattern analysis of the 30- to 60-day oscillation in the tropical troposphere. Climate Dyn., 4, 175190, https://doi.org/10.1007/BF00209520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, J.-S., 1992: On the relationship between the stratospheric quasi-biennial oscillation and the tropospheric Southern Oscillation. J. Atmos. Sci., 49, 725734, https://doi.org/10.1175/1520-0469(1992)049<0725:OTRBTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Y., and J. C. Furtado, 2017: The role of South Pacific atmospheric variability in the development of different types of ENSO. Geophys. Res. Lett., 44, 74387446, https://doi.org/10.1002/2017GL073475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zanna, L., 2012: Forecast skill and predictability of observed Atlantic sea surface temperatures. J. Climate, 25, 50475056, https://doi.org/10.1175/JCLI-D-11-00539.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, H., A. Clement, and P. Di Nezio, 2014: The South Pacific meridional mode: A mechanism for ENSO-like variability. J. Climate, 27, 769783, https://doi.org/10.1175/JCLI-D-13-00082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 94 94 42
Full Text Views 38 38 14
PDF Downloads 54 54 25

A Linear Inverse Model of Tropical and South Pacific Climate Variability: Optimal Structure and Stochastic Forcing

View More View Less
  • 1 Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
  • 2 ARC Centre of Excellence for Climate System Science, University of Tasmania, Hobart, Tasmania, Australia
  • 3 CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
  • 4 ARC Centre of Excellence for Climate Extremes, University of Tasmania, Hobart, Tasmania, Australia
© Get Permissions
Restricted access

Abstract

A stochastically forced linear inverse model (LIM) of the combined modes of variability from the tropical and South Pacific Oceans is used to investigate the linear growth of optimal initial perturbations and to identify the spatiotemporal features of the stochastic forcing associated with the atmospheric Pacific–South American patterns 1 and 2 (PSA1 and PSA2). Optimal initial perturbations are shown to project onto El Niño–Southern Oscillation (ENSO) and South Pacific decadal oscillation (SPDO), where the inclusion of subsurface South Pacific Ocean temperature variability significantly increases the multiyear linear predictability of the deterministic system. We show that the optimal extratropical sea surface temperature (SST) precursor is associated with the South Pacific meridional mode, which takes from 7 to 9 months to linearly evolve into the final ENSO and SPDO peaks in both the observations and as simulated in an atmosphere-forced ocean model. The optimal subsurface precursor resembles its peak phase, but with a weak amplitude, representing oceanic Rossby waves in the extratropical South Pacific. The stochastic forcing is estimated as the residual by removing the deterministic dynamics from the actual tendency under a centered difference approximation. The resulting stochastic forcing time series satisfies the Gaussian white noise assumption of the LIM. We show that the PSA-like variability is strongly associated with stochastic SST forcing in the tropical and South Pacific Oceans and contributes not only to excite the optimal initial perturbations associated with ENSO and the SPDO but in general to activate the entire stochastic SST forcing, especially in austral summer.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jiale Lou, jiale.lou@utas.edu.au

Abstract

A stochastically forced linear inverse model (LIM) of the combined modes of variability from the tropical and South Pacific Oceans is used to investigate the linear growth of optimal initial perturbations and to identify the spatiotemporal features of the stochastic forcing associated with the atmospheric Pacific–South American patterns 1 and 2 (PSA1 and PSA2). Optimal initial perturbations are shown to project onto El Niño–Southern Oscillation (ENSO) and South Pacific decadal oscillation (SPDO), where the inclusion of subsurface South Pacific Ocean temperature variability significantly increases the multiyear linear predictability of the deterministic system. We show that the optimal extratropical sea surface temperature (SST) precursor is associated with the South Pacific meridional mode, which takes from 7 to 9 months to linearly evolve into the final ENSO and SPDO peaks in both the observations and as simulated in an atmosphere-forced ocean model. The optimal subsurface precursor resembles its peak phase, but with a weak amplitude, representing oceanic Rossby waves in the extratropical South Pacific. The stochastic forcing is estimated as the residual by removing the deterministic dynamics from the actual tendency under a centered difference approximation. The resulting stochastic forcing time series satisfies the Gaussian white noise assumption of the LIM. We show that the PSA-like variability is strongly associated with stochastic SST forcing in the tropical and South Pacific Oceans and contributes not only to excite the optimal initial perturbations associated with ENSO and the SPDO but in general to activate the entire stochastic SST forcing, especially in austral summer.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jiale Lou, jiale.lou@utas.edu.au
Save