• Adames, Á. F., D. Kim, A. H. Sobel, A. Del Genio, and J. Wu, 2017a: Characterization of moist processes associated with changes in the propagation of the MJO with increasing CO2. J. Adv. Model. Earth Syst., 9, 29462967, https://doi.org/10.1002/2017MS001040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adames, Á. F., D. Kim, A. H. Sobel, A. Del Genio, and J. Wu, 2017b: Changes in the structure and propagation of the MJO with increasing CO2. J. Adv. Model. Earth Syst., 9, 12511268, https://doi.org/10.1002/2017MS000913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, L. V., and et al. , 2013: Summary for policymakers. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 3–29, https://doi.org/10.1017/CBO9781107415324.004.

    • Crossref
    • Export Citation
  • Arnold, N. P., Z. Kuang, and E. Tziperman, 2013: Enhanced MJO-like variability at high SST. J. Climate, 26, 9881001, https://doi.org/10.1175/JCLI-D-12-00272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnold, N. P., M. Branson, Z. Kuang, D. A. Randall, and E. Tziperman, 2015: MJO intensification with warming in the superparameterized CESM. J. Climate, 28, 27062724, https://doi.org/10.1175/JCLI-D-14-00494.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bui, H. X., and E. D. Maloney, 2018: Changes in Madden–Julian oscillation precipitation and wind variance under global warming. Geophys. Res. Lett., 45, 71487155, https://doi.org/10.1029/2018GL078504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bui, H. X., and E. D. Maloney, 2019a: Transient response of MJO precipitation and circulation to greenhouse gas forcing. Geophys. Res. Lett., 46, 13 54613 555, https://doi.org/10.1029/2019GL085328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bui, H. X., and E. D. Maloney, 2019b: Mechanisms for global warming impacts on Madden–Julian oscillation precipitation amplitude. J. Climate, 32, 69616975, https://doi.org/10.1175/JCLI-D-19-0051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bui, H. X., and E. D. Maloney, 2020: Changes to the Madden–Julian oscillation in coupled and uncoupled aquaplanet simulations with 4xCO2. J. Adv. Model. Earth Syst., 12, e2020MS002179, https://doi.org/10.1029/2020MS002179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chikira, M., 2014: Eastward-propagating intraseasonal oscillation represented by Chikira–Sugiyama cumulus parameterization. Part II: Understanding moisture variation under weak temperature gradient balance. J. Atmos. Sci., 71, 615639, https://doi.org/10.1175/JAS-D-13-038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cui, J. X., and T. Li, 2019: Changes of MJO propagation characteristics under global warming. Climate Dyn., 53, 53115327, https://doi.org/10.1007/s00382-019-04864-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Z., P.-C. Hsu, and F. Liu, 2020: Factors regulating the multidecadal changes in MJO amplitude over the twentieth century. J. Climate, 33, 95139529, https://doi.org/10.1175/JCLI-D-20-0111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, C., and T. Li, 2019: Does global warming amplify interannual climate variability? Climate Dyn., 52, 26672684, https://doi.org/10.1007/s00382-018-4286-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., M. C. Wheeler, and C. Zhang, 2007: Seasonal dependence of the MJO–ENSO relationship. J. Climate, 20, 531543, https://doi.org/10.1175/JCLI4003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsiao, W. T., E. D. Maloney, and E. A. Barnes, 2020: Investigating recent changes in MJO precipitation and circulation in multiple reanalyses. Geophys. Res. Lett., 47, e2020GL090139, https://doi.org/10.1029/2020GL090139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., T.-H. Lee, C.-H. Tsou, P.-S. Chu, Y. Qian, and M. Bi, 2017: Role of scale interactions in the abrupt change of tropical cyclone in autumn over the western north Pacific. Climate Dyn., 49, 31753192, https://doi.org/10.1007/s00382-016-3504-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, P., 2016: Time-varying response of ENSO-induced tropical Pacific rainfall to global warming in CMIP5 models. Part I: Multimodel ensemble results. J. Climate, 29, 57635778, https://doi.org/10.1175/JCLI-D-16-0058.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, P., and S.-P. Xie, 2015: Mechanisms of change in ENSO-induced tropical Pacific rainfall variability in a warming climate. Nat. Geosci., 8, 922926, https://doi.org/10.1038/ngeo2571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, P., X.-T. Zheng, and J. Ying, 2019: Disentangling the changes in the Indian Ocean dipole–related SST and rainfall variability under global warming in CMIP5 models. J. Climate, 32, 38033818, https://doi.org/10.1175/JCLI-D-18-0847.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ling, J., and et al. , 2017: Challenges and opportunities in MJO studies. Bull. Amer. Meteor. Soc., 98, ES53ES56, https://doi.org/10.1175/BAMS-D-16-0283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, P., T. Li, B. Wang, M. Zhang, J. Luo, Y. Masumoto, X. Wang, and E. Roeckner, 2013: MJO change with A1B global warming estimated by the 40-km ECHAM5. Climate Dyn., 41, 10091023, https://doi.org/10.1007/s00382-012-1532-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122, 814837, https://doi.org/10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and S. P. Xie, 2013: Sensitivity of tropical intraseasonal variability to the pattern of climate warming. J. Adv. Model. Earth Syst., 5, 3247, https://doi.org/10.1029/2012MS000171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., Á. F. Adames, and H. X. Bui, 2019: Madden–Julian oscillation changes under anthropogenic warming. Nat. Climate Change, 9, 2633, https://doi.org/10.1038/s41558-018-0331-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, A. G., O. Alves, and H. H. Hendon, 2009: A coupled GCM analysis of MJO activity at the onset of El Niño. J. Atmos. Sci., 66, 966983, https://doi.org/10.1175/2008JAS2855.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Power, S., F. Delage, C. Chung, G. Kociuba, and K. Keay, 2013: Robust twenty-first-century projections of El Niño and related precipitation variability. Nature, 502, 541545, https://doi.org/10.1038/nature12580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rushley, S. S., D. Kim, and Á. F. Adames, 2019: Changes in the MJO under greenhouse gas–induced warming in CMIP5 models. J. Climate, 32, 803821, https://doi.org/10.1175/JCLI-D-18-0437.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, and L. Vogel, 2012: Does global warming cause intensified interannual hydroclimate variability? J. Climate, 25, 33553372, https://doi.org/10.1175/JCLI-D-11-00363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Subramanian, A., M. Jochum, A. J. Miller, R. Neale, H. Seo, D. Waliser, and R. Murtugudde, 2014: The MJO and global warming: A study in CCSM4. Climate Dyn., 42, 20192031, https://doi.org/10.1007/s00382-013-1846-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, N., T. Zhou, X. Chen, H. Endo, A. Kitoh, and B. Wu, 2020: Amplified tropical Pacific rainfall variability related to background SST warming. Climate Dyn., 54, 23872402, https://doi.org/10.1007/s00382-020-05119-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, C., N. Sato, A. Seiki, K. Yoneyama, and R. Shirooka, 2011: Projected future change of MJO and its extratropical teleconnection in East Asia during the northern winter simulated in IPCC AR4 models. SOLA, 7, 201204, https://doi.org/10.2151/sola.2011-051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and J. Y. Moon, 2017: An anomalous genesis potential index for MJO modulation of tropical cyclones. J. Climate, 30, 40214035, https://doi.org/10.1175/JCLI-D-16-0749.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., G. Chen, and F. Liu, 2019: Diversity of the Madden–Julian oscillation. Sci. Adv., 5, eaax0220, https://doi.org/10.1126/sciadv.aax0220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., H. H. Hendon, S. Cleland, H. Meinke, and A. Donald, 2009: Impacts of the Madden–Julian oscillation on Australian rainfall and circulation. J. Climate, 22, 14821498, https://doi.org/10.1175/2008JCLI2595.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolding, B. O., E. D. Maloney, S. Henderson, and M. Branson, 2017: Climate change and the Madden–Julian oscillation: A vertically resolved weak temperature gradient analysis. J. Adv. Model. Earth Syst., 9, 307331, https://doi.org/10.1002/2016MS000843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R. G., and B. P. Kirtman, 2005: Roles of Indian and Pacific Ocean air–sea coupling in tropical atmospheric variability. Climate Dyn., 25, 155170, https://doi.org/10.1007/s00382-005-0003-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R. G., B. P. Kirtman, and K. Pegion, 2006: Local air–sea relationship in observations and model simulations. J. Climate, 19, 49144932, https://doi.org/10.1175/JCLI3904.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., C. Deser, G. A. Vecchi, J. Ma, H. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986, https://doi.org/10.1175/2009JCLI3329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ying, J., P. Huang, and T. Lian, 2019: Changes in the sensitivity of tropical rainfall response to local sea surface temperature anomalies under global warming. Int. J. Climatol., 39, 58015814, https://doi.org/10.1002/joc.6303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2013: Madden–Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 18491870, https://doi.org/10.1175/BAMS-D-12-00026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 114 114 114
Full Text Views 38 38 38
PDF Downloads 37 37 37

Mechanism for the Spatial Pattern of the Amplitude Changes in Tropical Intraseasonal and Interannual Variability under Global Warming

View More View Less
  • 1 Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 2 Earth System Modeling Center and Climate Dynamics Research Center, Nanjing University of Information Science and Technology, Nanjing, China
  • | 3 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Chinese Academy of Sciences, Beijing, China
  • | 4 School of Atmospheric Sciences, Sun Yat-Sen University, Guangzhou, China
  • | 5 Key Laboratory of Tropical Atmosphere–Ocean System Ministry of Education, Zhuhai, China
  • | 6 Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
© Get Permissions
Restricted access

Abstract

This study investigates what forms the spatial pattern of the amplitude changes in tropical intraseasonal and interannual variability—represented by the two most important variables, precipitation (ΔP′) and circulation (Δω′)—under global warming, based on 24 models from the phase 5 of the Coupled Model Intercomparison Project (CMIP5). Diagnostic analyses reveal that the moisture budget and thermodynamic energy equations related to the ΔP′ and Δω′ proposed separately in previous studies are simultaneously tenable. As a result, we investigate the mechanism for the spatial pattern of Δω′ from the perspective of the moist static energy (MSE) balance mainly considering the positive contribution from vertical advection. Therefore, based on the simplified MSE balance, the spatial pattern of Δω′ can be approximately projected based on three factors: background circulation variability ω′, the vertical gradient of mean-state MSE M¯, and its future change ΔM¯. Under global warming, the middle-level vertical gradient of MSE increases slightly over the Indian Ocean and the Maritime Continent and decreases over the equatorial Pacific where the increase in sea surface temperature (SST) exceeds the tropical mean. The vertical gradient of mean-state MSE is modified by the increase in vertical gradients of moisture and dry static energy (DSE) simultaneously. In short, the change in the vertical gradient of mean-state MSE under global warming can influence the moisture budget and thermodynamic energy balances, resulting in the spatial pattern of ΔP′ and Δω′ at intraseasonal and interannual time scales consequently, mainly determined by the lower boundary moisture condition in the response of the SST change pattern.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0885.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Ping Huang, huangping@mail.iap.ac.cn

Abstract

This study investigates what forms the spatial pattern of the amplitude changes in tropical intraseasonal and interannual variability—represented by the two most important variables, precipitation (ΔP′) and circulation (Δω′)—under global warming, based on 24 models from the phase 5 of the Coupled Model Intercomparison Project (CMIP5). Diagnostic analyses reveal that the moisture budget and thermodynamic energy equations related to the ΔP′ and Δω′ proposed separately in previous studies are simultaneously tenable. As a result, we investigate the mechanism for the spatial pattern of Δω′ from the perspective of the moist static energy (MSE) balance mainly considering the positive contribution from vertical advection. Therefore, based on the simplified MSE balance, the spatial pattern of Δω′ can be approximately projected based on three factors: background circulation variability ω′, the vertical gradient of mean-state MSE M¯, and its future change ΔM¯. Under global warming, the middle-level vertical gradient of MSE increases slightly over the Indian Ocean and the Maritime Continent and decreases over the equatorial Pacific where the increase in sea surface temperature (SST) exceeds the tropical mean. The vertical gradient of mean-state MSE is modified by the increase in vertical gradients of moisture and dry static energy (DSE) simultaneously. In short, the change in the vertical gradient of mean-state MSE under global warming can influence the moisture budget and thermodynamic energy balances, resulting in the spatial pattern of ΔP′ and Δω′ at intraseasonal and interannual time scales consequently, mainly determined by the lower boundary moisture condition in the response of the SST change pattern.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0885.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Ping Huang, huangping@mail.iap.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 1.86 MB)
Save