• Chadwick, C., J. Gironas, S. Vicuna, and F. Meza, 2019: Estimating the local time of emergence of climatic variables using an unbiased mapping of GCMs: An application in semiarid and Mediterranean Chile. J. Hydrometeor., 20, 16351647, https://doi.org/10.1175/JHM-D-19-0006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., and F. P. Brissette, 2019: Reliability of climate model multi-member ensembles in estimating internal precipitation and temperature variability at the multi-decadal scale. Int. J. Climatol., 39, 843856, https://doi.org/10.1002/joc.5846.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., F. P. Brissette, and R. Leconte, 2011: Uncertainty of downscaling method in quantifying the impact of climate change on hydrology. J. Hydrol., 401, 190202, https://doi.org/10.1016/j.jhydrol.2011.02.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., F. P. Brissette, M. Chaumont, and M. Braun, 2013: Performance and uncertainty evaluation of empirical downscaling methods in quantifying the climate change impacts on hydrology over two North American river basins. J. Hydrol., 479, 200214, https://doi.org/10.1016/j.jhydrol.2012.11.062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, Q. D., and Coauthors, 2006: The Community Climate System Model version 3 (CCSM3). J. Climate, 19, 21222143, https://doi.org/10.1175/JCLI3761.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., R. Knutti, S. Solomon, and A. S. Phillips, 2012a: Communication of the role of natural variability in future North American climate. Nat. Climate Change, 2, 775779, https://doi.org/10.1038/nclimate1562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Phillips, V. Bourdette, and H. Teng, 2012b: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546, https://doi.org/10.1007/s00382-010-0977-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., F. Lehner, and K. B. Rodgers, 2020: Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Climate Change, 10, 277286, https://doi.org/10.1038/s41558-020-0731-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N. S., and M. Scherer, 2011: Observational and model evidence of global emergence of permanent, unprecedented heat in the 20th and 21st centuries. Climatic Change, 107, 615624, https://doi.org/10.1007/s10584-011-0112-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., and R. Knutti, 2014: Detection of spatially aggregated changes in temperature and precipitation extremes. Geophys. Res. Lett., 41, 547554, https://doi.org/10.1002/2013GL058499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., U. Beyerle, and R. Knutti, 2013: Robust spatially aggregated projections of climate extremes. Nat. Climate Change, 3, 10331038, https://doi.org/10.1038/nclimate2051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frame, D. J., L. J. Harrington, J. S. Fuglestvedt, R. J. Millar, M. M. Joshi, and S. Caney, 2019: Emissions and emergence: A new index comparing relative contributions to climate change with relative climatic consequences. Environ. Res. Lett., 14, 084009, https://doi.org/10.1088/1748-9326/ab27fc.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaetani, M., S. Janicot, M. Vrac, A. M. Famien, and B. Sultan, 2020: Robust assessment of the time of emergence of precipitation change in West Africa. Sci. Rep., 10, 7670, https://doi.org/10.1038/s41598-020-63782-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and R. Francisco, 2000: Uncertainties in regional climate change prediction: A regional analysis of ensemble simulations with the HadCM2 coupled AOGCM. Climate Dyn., 16, 169182, https://doi.org/10.1007/PL00013733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and X. Bi, 2009: Time of emergence (TOE) of GHG-forced precipitation change hot-spots. Geophys. Res. Lett., 36, L06709, https://doi.org/10.1029/2009GL037593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, L., J. Chen, C. Y. Xu, J. S. Kim, H. Chen, J. Xia, and L. Zhang, 2019: The contribution of internal climate variability to climate change impacts on droughts. Sci. Total Environ., 684, 229246, https://doi.org/10.1016/j.scitotenv.2019.05.345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, and R. Ruedy, 2012: Perception of climate change. Proc. Natl. Acad. Sci. USA, 109, E2415E2423, https://doi.org/10.1073/pnas.1205276109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, https://doi.org/10.1002/joc.3711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, E., and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90, 10951108, https://doi.org/10.1175/2009BAMS2607.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, E., and R. Sutton, 2011: The potential to narrow uncertainty in projections of regional precipitation change. Climate Dyn., 37, 407418, https://doi.org/10.1007/s00382-010-0810-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, E., and R. Sutton, 2012: Time of emergence of climate signals. Geophys. Res. Lett., 39, L01702, https://doi.org/10.1029/2011GL050087.

  • Hawkins, E., D. Frame, L. Harrington, M. Joshi, A. King, M. Rojas, R. Sutton, 2020: Observed emergence of the climate change signal: From the familiar to the unknown. Geophys. Res. Lett., 47, e2019GL086259, https://doi.org/10.1029/2019GL086259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hulme, M., E. M. Barrow, N. W. Arnell, P. A. Harrison, T. C. Johns, and T. E. Downing, 1999: Relative impacts of human-induced climate change and natural climate variability. Nature, 397, 688691, https://doi.org/10.1038/17789.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324.

    • Crossref
    • Export Citation
  • Kay, J., and Coauthors, 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., and W. F. Zwiers, 2007: Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Climate, 20, 14191444, https://doi.org/10.1175/JCLI4066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, K. B., H. H. Kwon, and D. Han, 2016: Precipitation ensembles conforming to natural variations derived from a regional climate model using a new bias correction scheme. Hydrol. Earth Syst. Sci., 20, 20192034, https://doi.org/10.5194/hess-20-2019-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, A. D., and L. J. Harrington, 2018: The inequality of climate change from 1.5 to 2°C of global warming. Geophys. Res. Lett., 45, 50305033, https://doi.org/10.1029/2018GL078430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, A. D., and Coauthors, 2015: The timing of anthropogenic emergence in simulated climate extremes. Environ. Res. Lett., 10, 094015, https://doi.org/10.1088/1748-9326/10/9/094015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusunoki, S., T. Ose, and M. Hosaka, 2020: Emergence of unprecedented climate change in projected future precipitation. Sci. Rep., 10, 4802, https://doi.org/10.1038/s41598-020-61792-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamarque, J. F., G. P. Kyle, M. Meinshausen, K. Riahi, S. J. Smith, D. P. van Vuuren, A. J. Conley, and F. Vitt, 2011: Global and regional evolution of short-lived radiatively-active gases and aerosols in the Representative Concentration Pathways. Climatic Change, 109, 191212, https://doi.org/10.1007/s10584-011-0155-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, D., and Coauthors, 2016: Time of emergence of anthropogenic warming signals in the Northeast Asia assessed from multi-regional climate models. Asia-Pac. J. Atmos. Sci., 52, 129137, https://doi.org/10.1007/s13143-016-0014-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehner, F., C. Deser, and L. Terray, 2017: Toward a new estimate of “time of emergence” of anthropogenic warming: Insights from dynamical adjustment and a large initial-condition model ensemble. J. Climate, 30, 77397756, https://doi.org/10.1175/JCLI-D-16-0792.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehner, F., C. Deser, N. Maher, J. Marotzke, E. M. Fischer, L. Brunner, R. Knutti, and E. Hawkins, 2020: Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6. Earth Syst. Dynam., 11, 491508, https://doi.org/10.5194/esd-11-491-2020.

    • Search Google Scholar
    • Export Citation
  • Liu, X., and B. Chen, 2000: Climate warming in the Tibetan Plateau during recent decades. Int. J. Climatol., 20, 17291742, https://doi.org/10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, Z., Z. Jiang, and S. Tang, 2015: Impacts of climate change on distributions and diversity of ungulates on the Tibetan Plateau. Ecol. Appl., 25, 2438, https://doi.org/10.1890/13-1499.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maher, N., F. Lehner, and J. Marotzke, 2020: Quantifying the role of internal variability in the temperature we expect to observe in the coming decades. Environ. Res. Lett., 15, 054014, https://doi.org/10.1088/1748-9326/ab7d02.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahlstein, I., R. Knutti, S. Solomon, and R. W. Portmann, 2011: Early onset of significant local warming in low latitude countries. Environ. Res. Lett., 6, 034009, https://doi.org/10.1088/1748-9326/6/3/034009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahony, C. R., and A. J. Cannon, 2018: Wetter summers can intensify departures from natural variability in a warming climate. Nat. Commun., 9, 783, https://doi.org/10.1038/s41467-018-03132-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maraun, D., 2013: When will trends in European mean and heavy daily precipitation emerge? Environ. Res. Lett., 8, 014004, https://doi.org/10.1088/1748-9326/8/1/014004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martel, J. L., A. Mailhot, F. Brissette, and D. Caya, 2018: Role of natural climate variability in the detection of anthropogenic climate change signal for mean and extreme precipitation at local and regional scales. J. Climate, 31, 42414263, https://doi.org/10.1175/JCLI-D-17-0282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mullan, D., and Coauthors, 2017: Climate change and the long-term viability of the world’s busiest heavy haul ice road. Theor. Appl. Climatol., 129, 10891108, https://doi.org/10.1007/s00704-016-1830-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, T. H., S. K. Min, S. Paik, and D. Lee, 2018: Time of emergence in regional precipitation changes: An updated assessment using the CMIP5 multi-model ensemble. Climate Dyn., 51, 31793193, https://doi.org/10.1007/s00382-018-4073-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., R. Knutti, F. Lehner, C. Deser, and B. M. Sanderson, 2017: Precipitation variability increases in a warmer climate. Sci. Rep., 7, 17966, https://doi.org/10.1038/s41598-017-17966-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riahi, K., and Coauthors, 2011: RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Climatic Change, 109, 3357, https://doi.org/10.1007/s10584-011-0149-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rojas, M., F. Lambert, J. Ramirez-Villegas, and A. J. Challinor, 2019: Emergence of robust precipitation changes across crop production areas in the 21st century. Proc. Natl. Acad. Sci. USA, 116, 66736678, https://doi.org/10.1073/pnas.1811463116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2011: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teutschbein, C., and J. Seibert, 2012: Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol., 456–457, 1229, https://doi.org/10.1016/j.jhydrol.2012.05.052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., B. Zhou, D. Qin, J. Wu, R. Gao, and L. Song, 2017: Changes in mean and extreme temperature and precipitation over the arid region of northwestern China: Observation and projection. Adv. Atmos. Sci., 34, 289305, https://doi.org/10.1007/s00376-016-6160-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X. C., 2005: Spatial downscaling of global climate model output for site-specific assessment of crop production and soil erosion. Agric. For. Meteor., 135, 215229, https://doi.org/10.1016/j.agrformet.2005.11.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhuan, M., J. Chen, M. X. Shen, C. Y. Xu, H. Chen, and L. H. Xiong, 2018: Timing of human-induced climate change emergence from internal climate variability for hydrological impact studies. Hydrol. Res., 49, 421437, https://doi.org/10.2166/nh.2018.059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhuan, M., J. Chen, C. Y. Xu, C. Zhao, L. Xiong, and P. Liu, 2019: A method for investigating the relative importance of three components in overall uncertainty of climate projections. Int. J. Climatol., 39, 18531871, https://doi.org/10.1002/joc.5920.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 362 362 58
Full Text Views 79 79 11
PDF Downloads 123 123 20

Relative Importance of Internal Climate Variability versus Anthropogenic Climate Change in Global Climate Change

View More View Less
  • 1 State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei, China
  • 2 Hubei Key Laboratory of Water System Science for Sponge City Construction, Wuhan University, Wuhan, China
  • 3 École de technologie supérieure, Université du Québec, Montréal, Québec, Canada
  • 4 Lasalle/NHC, Montréal, Québec, Canada
  • 5 USDA Agricultural Research Service, Grazinglands Research Laboratory, El Reno, Oklahoma
  • 6 Institute for Sustainable Cities, and Department of Geography, Hunter College, City University of New York, New York, New York
© Get Permissions
Restricted access

Abstract

To better understand the role of internal climate variability (ICV) in climate change impact studies, this study quantifies the importance of ICV [defined as the intermember variability of a single model initial-condition large ensemble (SMILE)] in relation to the anthropogenic climate change (ACC; defined as multimodel ensemble mean) in global and regional climate change using a criterion of time of emergence (ToE). The uncertainty of the estimated ToE is specifically investigated by using three SMILEs to estimate the ICV. The results show that using 1921–40 as a baseline period, the annual mean precipitation ACC is expected to emerge within this century over extratropical regions as well as along the equatorial band. However, ToEs are unlikely to occur, even by the end of this century, over intratropical regions outside of the equatorial band. In contrast, annual mean temperature ACC has already emerged from the temperature ICV for most of the globe. Similar spatial patterns are observed at the seasonal scale, while a weaker ACC for boreal summer (June–August) precipitation and additional ICV for boreal winter (December–February) temperature translate to later ToEs for some regions. In addition, the uncertainty of ToE related to the choice of a SMILE is mostly less than 20 years for annual mean precipitation and temperature. However, it can be as large as 90 years for annual mean precipitation over some regions. Overall, results indicate that the choice of a SMILE is a significant source of uncertainty in the estimation of ToE and results based on only one SMILE should be interpreted with caution.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0424.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jie Chen, jiechen@whu.edu.cn

Abstract

To better understand the role of internal climate variability (ICV) in climate change impact studies, this study quantifies the importance of ICV [defined as the intermember variability of a single model initial-condition large ensemble (SMILE)] in relation to the anthropogenic climate change (ACC; defined as multimodel ensemble mean) in global and regional climate change using a criterion of time of emergence (ToE). The uncertainty of the estimated ToE is specifically investigated by using three SMILEs to estimate the ICV. The results show that using 1921–40 as a baseline period, the annual mean precipitation ACC is expected to emerge within this century over extratropical regions as well as along the equatorial band. However, ToEs are unlikely to occur, even by the end of this century, over intratropical regions outside of the equatorial band. In contrast, annual mean temperature ACC has already emerged from the temperature ICV for most of the globe. Similar spatial patterns are observed at the seasonal scale, while a weaker ACC for boreal summer (June–August) precipitation and additional ICV for boreal winter (December–February) temperature translate to later ToEs for some regions. In addition, the uncertainty of ToE related to the choice of a SMILE is mostly less than 20 years for annual mean precipitation and temperature. However, it can be as large as 90 years for annual mean precipitation over some regions. Overall, results indicate that the choice of a SMILE is a significant source of uncertainty in the estimation of ToE and results based on only one SMILE should be interpreted with caution.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0424.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jie Chen, jiechen@whu.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 1.18 MB)
Save