• Abram, N., and Coauthors, 2019: Framing and context of the report supplementary material. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, IPCC, 1–11.

  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674701, https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Back, L. E., and C. S. Bretherton, 2006: Geographic variability in the export of moist static energy and vertical motion profiles in the tropical Pacific. Geophys. Res. Lett., 33, L17810, https://doi.org/10.1029/2006GL026672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biasutti, M., 2013: Forced Sahel rainfall trends in the CMIP5 archive. J. Geophys. Res. Atmos., 118, 16131623, https://doi.org/10.1002/jgrd.50206.

  • Biasutti, M., and A. H. Sobel, 2009: Delayed Sahel rainfall and global seasonal cycle in a warmer climate. Geophys. Res. Lett., 36, L23707, https://doi.org/10.1029/2009GL041303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bombardi, R. J., and L. M. V. Carvalho, 2008: Variability of the monsoon regime over the Brazilian savanna: The present climate and projections for a 2xCO2 scenario using the MIROC model. Rev. Bras. Meteor., 23, 5872, https://doi.org/10.1590/S0102-77862008000100007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bombardi, R. J., and L. M. V. Carvalho, 2009: IPCC global coupled model simulations of the South America monsoon system. Climate Dyn., 33, 893916, https://doi.org/10.1007/s00382-008-0488-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bombardi, R. J., J. L. Kinter, and O. W. Frauenfeld, 2019: A global gridded dataset of the characteristics of the rainy and dry seasons. Bull. Amer. Meteor. Soc., 100, 13151328, https://doi.org/10.1175/BAMS-D-18-0177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boos, W. R., and R. L. Korty, 2016: Regional energy budget control of the intertropical convergence zone and application to mid-Holocene rainfall. Nat. Geosci., 9, 892897, https://doi.org/10.1038/ngeo2833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., S. Denvil, A. Caubel, and M. A. Foujols, 2018: IPSL IPSL-CM6A-LR model output prepared for CMIP6 CMIP. Earth System Grid Federation, accessed June 2020, https://doi.org/10.22033/ESGF/CMIP6.1534.

    • Crossref
    • Export Citation
  • Brown, J. N., and Coauthors, 2013: Implications of CMIP3 model biases and uncertainties for climate projections in the western tropical Pacific. Climatic Change, 119, 147161, https://doi.org/10.1007/s10584-012-0603-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, J., and B. Wang, 2019: NUIST NESMv3 model output prepared for CMIP6 CMIP. Earth System Grid Federation, accessed June 2020, https://doi.org/10.22033/ESGF/CMIP6.2021.

    • Crossref
    • Export Citation
  • Chen, H.-P.J.-Q. Sun, 2013: How large precipitation changes over global monsoon regions by CMIP5 models? Atmos. Oceanic Sci. Lett. 6 306311 https://doi.org/10.1080/16742834.2013.11447099

    • Search Google Scholar
    • Export Citation
  • Chen, Z., T. Zhou, L. Zhang, X. Chen, W. Zhang, and J. Jiang, 2020: Global land monsoon precipitation changes in CMIP6 projections. Geophys. Res. Lett., 47, e2019GL086902, https://doi.org/10.1029/2019GL086902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., and J. D. Neelin, 2001: Mechanisms limiting the southward extent of the South American summer monsoon. Geophys. Res. Lett., 28, 24332436, https://doi.org/10.1029/2000GL012138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., and J. D. Neelin, 2003: Mechanisms limiting the northward extent of the northern summer monsoons over North America, Asia, and Africa. J. Climate, 16, 406425, https://doi.org/10.1175/1520-0442(2003)016<0406:MLTNEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., and J. D. Neelin, 2004: Mechanisms of global warming impacts on regional tropical precipitation. J. Climate, 17, 26882701, https://doi.org/10.1175/1520-0442(2004)017<2688:MOGWIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., J. D. Neelin, and H. Su, 2001: Ocean–atmosphere–land feedbacks in an idealized monsoon. Quart. J. Roy. Meteor. Soc., 127, 18691891, https://doi.org/10.1002/qj.49712757602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., and R. Seager, 2013: The response of the North American monsoon to increased greenhouse gas forcing. J. Geophys. Res. Atmos., 118, 16901699, https://doi.org/10.1002/jgrd.50111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Creese, A., and R. Washington, 2018: A process-based assessment of CMIP5 rainfall in the Congo basin: The September–November rainy season. J. Climate, 31, 74177439, https://doi.org/10.1175/JCLI-D-17-0818.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., 2019a: NCAR CESM2 model output prepared for CMIP6 CMIP Historical. Earth System Grid Federation, accessed June 2020, https://doi.org/10.22033/ESGF/CMIP6.7627.

    • Crossref
    • Export Citation
  • Danabasoglu, G., 2019b: NCAR CESM2-WACCM model output prepared for CMIP6 CMIP. Earth System Grid Federation, accessed June 2020, https://doi.org/10.22033/ESGF/CMIP6.10024.

    • Crossref
    • Export Citation
  • Derbyshire, S. H., I. Beau, P. Bechtold, J.-Y. Grandpeix, J.-M. Piriou, J.-L. Redelsperger, and P. M. M. Soares, 2004: Sensitivity of moist convection to environmental humidity. Quart. J. Roy. Meteor. Soc., 130, 30553079, https://doi.org/10.1256/qj.03.130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., J. David Neelin, and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120, 11111143, https://doi.org/10.1002/qj.49712051902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, F., M. E. Mann, S. Lee, and J. L. Evans, 2012: Future changes in the South Asian summer monsoon: An analysis of the CMIP3 multimodel projections. J. Climate, 25, 39093928, https://doi.org/10.1175/JCLI-D-11-00133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiedler, S., and Coauthors, 2020: Simulated tropical precipitation assessed across three major phases of the Coupled Model Intercomparison Project (CMIP). Mon. Wea. Rev., 148, 36533680, https://doi.org/10.1175/MWR-D-19-0404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Funk, C., and Coauthors, 2015: The Climate Hazards Infrared Precipitation with Stations—A new environmental record for monitoring extremes. Sci. Data, 2, 150066, https://doi.org/10.1038/sdata.2015.66.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaetani, M., C. Flamant, S. Bastin, S. Janicot, C. Lavaysse, F. Hourdin, P. Braconnot, and S. Bony, 2017: West African monsoon dynamics and precipitation: The competition between global SST warming and CO2 increase in CMIP5 idealized simulations. Climate Dyn., 48, 13531373, https://doi.org/10.1007/s00382-016-3146-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geil, K. L., Y. L. Serra, and X. Zeng, 2013: Assessment of CMIP5 model simulations of the North American monsoon system. J. Climate, 26, 87878801, https://doi.org/10.1175/JCLI-D-13-00044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giannini, A., 2010: Mechanisms of climate change in the semiarid African Sahel: The local view. J. Climate, 23, 743756, https://doi.org/10.1175/2009JCLI3123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grose, M. R., and Coauthors, 2014: Assessment of the CMIP5 global climate model simulations of the western tropical Pacific climate system and comparison to CMIP3. Int. J. Climatol., 34, 33823399, https://doi.org/10.1002/joc.3916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gulizia, C., and I. Camilloni, 2015: Comparative analysis of the ability of a set of CMIP3 and CMIP5 global climate models to represent precipitation in South America. Int. J. Climatol., 35, 583595, https://doi.org/10.1002/joc.4005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, H., and Coauthors, 2018: NOAA-GFDL GFDL-CM4 model output. Earth System Grid Federation, accessed June 2020, https://doi.org/10.22033/ESGF/CMIP6.1402.

    • Crossref
    • Export Citation
  • Gusain, A., S. Ghosh, and S. Karmakar, 2020: Added value of CMIP6 over CMIP5 models in simulating Indian summer monsoon rainfall. Atmos. Res., 232, 104680, https://doi.org/10.1016/j.atmosres.2019.104680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ha, K., S. Moon, A. Timmermann, and D. Kim, 2020: Future changes of summer monsoon characteristics and evaporative demand over Asia in CMIP6 simulations. Geophys. Res. Lett., 47, e2020GL087492, https://doi.org/10.1029/2020GL087492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, C., T. Li, and W. Zhou, 2020: Drier North American monsoon in contrast to Asian–African monsoon under global warming. J. Climate, 33, 98019816, https://doi.org/10.1175/JCLI-D-20-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hsu, P., T. Li, H. Murakami, and A. Kitoh, 2013: Future change of the global monsoon revealed from 19 CMIP5 models. J. Geophys. Res. Atmos., 118, 12471260, https://doi.org/10.1002/jgrd.50145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, Y.-T., and D. M. W. Frierson, 2010: Increasing atmospheric poleward energy transport with global warming. Geophys. Res. Lett., 37, L24807, https://doi.org/10.1029/2010GL045440.

    • Crossref
    • Export Citation
  • Jiang, D., and Z. Tian, 2013: East Asian monsoon change for the 21st century: Results of CMIP3 and CMIP5 models. Chin. Sci. Bull., 58, 14271435, https://doi.org/10.1007/s11434-012-5533-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, C., B. Wang, and J. Liu, 2020: Future changes and controlling factors of the eight regional monsoons projected by CMIP6 models. J. Climate, 33, 93079326, https://doi.org/10.1175/JCLI-D-20-0236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joetzjer, E., H. Douville, C. Delire, and P. Ciais, 2013: Present-day and future Amazonian precipitation in global climate models: CMIP5 versus CMIP3. Climate Dyn., 41, 29212936, https://doi.org/10.1007/s00382-012-1644-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C., and L. M. V. Carvalho, 2013: Climate change in the South American monsoon system: Present climate and CMIP5 projections. J. Climate, 26, 66606678, https://doi.org/10.1175/JCLI-D-12-00412.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jourdain, N. C., A. Sen Gupta, A. S. Taschetto, C. C. Ummenhofer, A. F. Moise, and K. Ashok, 2013: The Indo-Australian monsoon and its relationship to ENSO and IOD in reanalysis data and the CMIP3/CMIP5 simulations. Climate Dyn., 41, 30733102, https://doi.org/10.1007/s00382-013-1676-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., I. M. Held, D. M. W. Frierson, and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 35213532, https://doi.org/10.1175/2007JCLI2146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.-J., B. Wang, and Q. Ding, 2008: The global monsoon variability simulated by CMIP3 coupled climate models. J. Climate, 21, 52715294, https://doi.org/10.1175/2008JCLI2041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krasting, J. P., and Coauthors, 2018: NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 CMIP Historical. Earth System Grid Federation, accessed June 2020, https://doi.org/10.22033/ESGF/CMIP6.8597.

    • Crossref
    • Export Citation
  • Kriegler, E., and Coauthors, 2017: Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century. Global Environ. Change, 42, 297315, https://doi.org/10.1016/j.gloenvcha.2016.05.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusunoki, S., and O. Arakawa, 2015: Are CMIP5 models better than CMIP3 models in simulating precipitation over East Asia? J. Climate, 28, 56015621, https://doi.org/10.1175/JCLI-D-14-00585.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambert, S. J., and G. J. Boer, 2001: CMIP1 evaluation and intercomparison of coupled climate models. Climate Dyn., 17, 83106, https://doi.org/10.1007/PL00013736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J.-Y., and B. Wang, 2014: Future change of global monsoon in the CMIP5. Climate Dyn., 42, 101119, https://doi.org/10.1007/s00382-012-1564-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., and S.-P. Xie, 2014: Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ problems. J. Climate, 27, 17651780, https://doi.org/10.1175/JCLI-D-13-00337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., M. Ting, C. Li, and N. Henderson, 2015: Mechanisms of Asian summer monsoon changes in response to anthropogenic forcing in CMIP5 models. J. Climate, 28, 41074125, https://doi.org/10.1175/JCLI-D-14-00559.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and J. A. Marengo, 2001: Interannual variability of the rainy season and rainfall in the Brazilian Amazon basin. J. Climate, 14, 43084318, https://doi.org/10.1175/1520-0442(2001)014<4308:IVOTRS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and Coauthors, 2014: North American climate in CMIP5 experiments: Part III: Assessment of twenty-first-century projections. J. Climate, 27, 22302270, https://doi.org/10.1175/JCLI-D-13-00273.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menon, A., A. Levermann, J. Schewe, J. Lehmann, and K. Frieler, 2013: Consistent increase in Indian monsoon rainfall and its variability across CMIP-5 models. Earth Syst. Dyn., 4, 287300, https://doi.org/10.5194/esd-4-287-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., and M. Henry, 2018: Simple estimates of polar amplification in moist diffusive energy balance models. J. Climate, 31, 58115824, https://doi.org/10.1175/JCLI-D-17-0578.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monerie, P.-A., B. Fontaine, and P. Roucou, 2012: Expected future changes in the African monsoon between 2030 and 2070 using some CMIP3 and CMIP5 models under a medium-low RCP scenario. J. Geophys. Res. Atmos., 117, D16111, https://doi.org/10.1029/2012JD017510.

    • Crossref
    • Export Citation
  • Moon, S., and K.-J. Ha, 2020: Future changes in monsoon duration and precipitation using CMIP6. npj Climate Atmos. Sci., 3, 45, https://doi.org/10.1038/s41612-020-00151-w.

    • Search Google Scholar
    • Export Citation
  • Narsey, S. Y., J. R. Brown, R. A. Colman, F. Delage, S. B. Power, A. F. Moise, and H. Zhang, 2020: Climate change projections for the Australian monsoon from CMIP6 models. Geophys. Res. Lett., 47, e2019GL086816, https://doi.org/10.1029/2019GL086816.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., 2007: Moist dynamics of tropical convection zones in monsoons, teleconnections and global warming. The Global Circulation of the Atmosphere, T. Schneider and A. Sobel, Eds., Princeton University Press, 385 pp.

    • Crossref
    • Export Citation
  • Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 312, https://doi.org/10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nie, J., W. R. Boos, and Z. Kuang, 2010: Observational evaluation of a convective quasi-equilibrium view of monsoons. J. Climate, 23, 44164428, https://doi.org/10.1175/2010JCLI3505.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niznik, M. J., B. R. Lintner, A. J. Matthews, and M. J. Widlansky, 2015: The role of tropical–extratropical interaction and synoptic variability in maintaining the South Pacific convergence zone in CMIP5 models. J. Climate, 28, 33533374, https://doi.org/10.1175/JCLI-D-14-00527.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oueslati, B., and G. Bellon, 2015: The double ITCZ bias in CMIP5 models: Interaction between SST, large-scale circulation and precipitation. Climate Dyn., 44, 585607, https://doi.org/10.1007/s00382-015-2468-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, D. J., P. Willetts, C. Birch, A. G. Turner, J. H. Marsham, C. M. Taylor, S. Kolusu, and G. M. Martin, 2016: The interaction of moist convection and mid-level dry air in the advance of the onset of the Indian monsoon. Quart. J. Roy. Meteor. Soc., 142, 22562272, https://doi.org/10.1002/qj.2815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, H. G., and W. R. Boos, 2020: Feedbacks and eddy diffusivity in an energy balance model of tropical rainfall shifts. npj Climate Atmos. Sci., 3, 11, https://doi.org/10.1038/s41612-020-0114-4.

    • Search Google Scholar
    • Export Citation
  • Qing, B., 2012: Projected changes in Asian summer monsoon in RCP scenarios of CMIP5. Atmos. Oceanic Sci. Lett., 5, 4348, https://doi.org/10.1080/16742834.2012.11446959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramsay, H. A., and A. H. Sobel, 2011: Effects of relative and absolute sea surface temperature on tropical cyclone potential intensity using a single-column model. J. Climate, 24, 183193, https://doi.org/10.1175/2010JCLI3690.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riahi, K., and Coauthors, 2017: The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environ. Change, 42, 153168, https://doi.org/10.1016/j.gloenvcha.2016.05.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2012: Atmospheric reanalyses—Recent progress and prospects for the future. NASA Tech. Rep. Series on Global Modeling and Data Assimilation, NASA/TM–2012-104606, Vol. 29, 48 pp., http://gmao.gsfc.nasa.gov/pubs/docs/NASATM2012-104606v29.pdf.

  • Roehrig, R., D. Bouniol, F. Guichard, F. Hourdin, and J.-L. Redelsperger, 2013: The present and future of the West African monsoon: A process-oriented assessment of CMIP5 simulations along the AMMA transect. J. Climate, 26, 64716505, https://doi.org/10.1175/JCLI-D-12-00505.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., T. Bischoff, and G. H. Haug, 2014: Migrations and dynamics of the intertropical convergence zone. Nature, 513, 4553, https://doi.org/10.1038/nature13636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Séférian, R., 2018: CNRM-CERFACS CNRM-ESM2-1 Model Output Prepared for CMIP6 CMIP Historical. Earth System Grid Federation, accessed June 2020, https://doi.org/10.22033/ESGF/CMIP6.4068.

    • Crossref
    • Export Citation
  • Séférian, R., and Coauthors, 2016: Development and evaluation of CNRM Earth system model—CNRM-ESM1. Geosci. Model Dev., 9, 14231453, https://doi.org/10.5194/gmd-9-1423-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., J. Ok, J.-H. Son, and D.-H. Cha, 2013: Assessing future changes in the East Asian summer monsoon using CMIP5 coupled models. J. Climate, 26, 76627675, https://doi.org/10.1175/JCLI-D-12-00694.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seth, A., M. Rojas, and S. A. Rauscher, 2010: CMIP3 projected changes in the annual cycle of the South American monsoon. Climatic Change, 98, 331357, https://doi.org/10.1007/s10584-009-9736-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seth, A., S. A. Rauscher, M. Rojas, A. Giannini, and S. J. Camargo, 2011: Enhanced spring convective barrier for monsoons in a warmer world? Climatic Change, 104, 403414, https://doi.org/10.1007/s10584-010-9973-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seth, A., S. A. Rauscher, M. Biasutti, A. Giannini, S. J. Camargo, and M. Rojas, 2013: CMIP5 projected changes in the annual cycle of precipitation in monsoon regions. J. Climate, 26, 73287351, https://doi.org/10.1175/JCLI-D-12-00726.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharmila, S., S. Joseph, A. K. Sahai, S. Abhilash, and R. Chattopadhyay, 2015: Future projection of Indian summer monsoon variability under climate change scenario: An assessment from CMIP5 climate models. Global Planet. Change, 124, 6278, https://doi.org/10.1016/j.gloplacha.2014.11.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., and Coauthors, 2013: North American climate in CMIP5 experiments. Part I: Evaluation of historical simulations of continental and regional climatology. J. Climate, 26, 92099245, https://doi.org/10.1175/JCLI-D-12-00592.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, F., and T. Zhou, 2014: Interannual variability of East Asian summer monsoon simulated by CMIP3 and CMIP5 AGCMs: Skill dependence on Indian Ocean–western Pacific anticyclone teleconnection. J. Climate, 27, 16791697, https://doi.org/10.1175/JCLI-D-13-00248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sooraj, K. P., P. Terray, and M. Mujumdar, 2015: Global warming and the weakening of the Asian summer monsoon circulation: Assessments from the CMIP5 models. Climate Dyn., 45, 233252, https://doi.org/10.1007/s00382-014-2257-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., H. Annamalai, I.-S. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang, and T. Zhou, 2013: The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Climate Dyn., 41, 27112744, https://doi.org/10.1007/s00382-012-1607-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swanson, K. L., 2008: Nonlocality of Atlantic tropical cyclone intensities. Geochem. Geophys. Geosyst., 9, Q04V01, https://doi.org/10.1029/2007GC001844.

    • Crossref
    • Export Citation
  • Swart, N. C., and Coauthors, 2019: The Canadian Earth System Model version 5 (CanESM5.0.3). Geosci. Model Dev., 12, 48234873, https://doi.org/10.5194/gmd-12-4823-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, B., and X. Dong, 2020: The double-ITCZ bias in CMIP3, CMIP5, and CMIP6 models based on annual mean precipitation. Geophys. Res. Lett., 47, e2020GL087232, https://doi.org/10.1029/2020GL087232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450, 10661070, https://doi.org/10.1038/nature06423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vera, C., and G. Silvestri, 2009: Precipitation interannual variability in South America from the WCRP-CMIP3 multi-model dataset. Climate Dyn., 32, 10031014, https://doi.org/10.1007/s00382-009-0534-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vera, C., G. Silvestri, B. Liebmann, and P. González, 2006: Climate change scenarios for seasonal precipitation in South America from IPCC-AR4 models. Geophys. Res. Lett., 33, L13707, https://doi.org/10.1029/2006GL025759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voldoire, A., 2018: CMIP6 simulations of the CNRM-CERFACS based on CNRM-CM6-1 model for CMIP experiment historical. Earth System Grid Federation, accessed June 2020, https://doi.org/10.22033/ESGF/CMIP6.4066.

    • Crossref
    • Export Citation
  • Voldoire, A., and Coauthors, 2019: Evaluation of CMIP6 DECK experiments with CNRM-CM6-1. J. Adv. Model. Earth Syst., 11, 21772213, https://doi.org/10.1029/2019MS001683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Volodin, E., and Coauthors, 2019: INM INM-CM5-0 model output prepared for CMIP6 CMIP piControl. Earth System Grid Federation, accessed June 2020, https://doi.org/10.22033/ESGF/CMIP6.5081.

    • Crossref
    • Export Citation
  • Wang, B., C. Jin, and J. Liu, 2020: Understanding future change of global monsoons projected by CMIP6 models. J. Climate, 33, 64716489, https://doi.org/10.1175/JCLI-D-19-0993.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and Coauthors, 2021: Monsoons climate change assessment. Bull. Amer. Meteor. Soc., 102, E1–E19, https://doi.org/10.1175/BAMS-D-19-0335.1.

    • Crossref
    • Export Citation
  • Wu, T., and Coauthors, 2019: The Beijing Climate Center Climate System Model (BCC-CSM): The main progress from CMIP5 to CMIP6. Geosci. Model Dev., 12, 15731600, https://doi.org/10.5194/gmd-12-1573-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., J. E. Janowiak, P. A. Arkin, R. Adler, A. Gruber, R. Ferraro, G. J. Huffman, and S. Curtis, 2003: GPCP pentad precipitation analyses: An experimental dataset based on gauge observations and satellite estimates. J. Climate, 16, 21972214, https://doi.org/10.1175/2769.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xin, X., T. Wu, J. Zhang, J. Yao, and Y. Fang, 2020: Comparison of CMIP6 and CMIP5 simulations of precipitation in China and the East Asian summer monsoon. Int. J. Climatol., 40, 6423–6440, https://doi.org/10.1002/joc.6590.

    • Crossref
    • Export Citation
  • Yin, L., R. Fu, E. Shevliakova, and R. E. Dickinson, 2013: How well can CMIP5 simulate precipitation and its controlling processes over tropical South America? Climate Dyn., 41, 31273143, https://doi.org/10.1007/s00382-012-1582-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., and Coauthors, 2019: MRI MRI-ESM2.0 model output prepared for CMIP6 CMIP. Earth System Grid Federation, accessed June 2020, https://doi.org/10.22033/ESGF/CMIP6.621.

    • Crossref
    • Export Citation
  • Zhang, X., H. Liu, and M. Zhang, 2015: Double ITCZ in coupled ocean–atmosphere models: From CMIP3 to CMIP5. Geophys. Res. Lett., 42, 86518659, https://doi.org/10.1002/2015GL065973.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and S. Fueglistaler, 2020: How tropical convection couples high moist static energy over land and ocean. Geophys. Res. Lett., 47, e2019GL086387, https://doi.org/10.1029/2019GL086387.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 313 313 71
Full Text Views 94 94 29
PDF Downloads 110 110 34

Explaining Globally Inhomogeneous Future Changes in Monsoons Using Simple Moist Energy Diagnostics

View More View Less
  • 1 a Department of Geography, Texas A&M University, College Station, Texas
  • | 2 b Department of Earth and Planetary Science, University of California, Berkeley, California
  • | 3 c Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

This study examines the annual cycle of monsoon precipitation simulated by models from phase 6 of the Coupled Model Intercomparison Project (CMIP6), then uses moist energy diagnostics to explain globally inhomogeneous projected future changes. Rainy season characteristics are quantified using a consistent method across the globe. Model bias is shown to include rainy season onsets tens of days later than observed in some monsoon regions (India, Australia, and North America) and overly large summer precipitation in others (North America, South America, and southern Africa). Projected next-century changes include rainy season lengthening in the two largest Northern Hemisphere monsoon regions (South Asia and central Sahel) and shortening in the two largest Southern Hemisphere regions (South America and southern Africa). Changes in the North American and Australian monsoons are less coherent across models. To understand these changes, relative moist static energy (MSE) is defined as the difference between local and tropical-mean surface air MSE. Future changes in relative MSE in each region correlate well with onset and demise date changes. Furthermore, Southern Hemisphere regions projected to undergo rainy season shortening are spanned by an increasing equator-to-pole MSE gradient, suggesting their rainfall will be increasingly inhibited by fluxes of dry extratropical air; Northern Hemisphere regions with projected lengthening of rainy seasons undergo little change in equator-to-pole MSE gradient. Thus, although model biases raise questions as to the reliability of some projections, these results suggest that globally inhomogeneous future changes in monsoon timing may be understood through simple measures of surface air MSE.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Rodrigo J. Bombardi, rjbombardi@tamu.edu

Abstract

This study examines the annual cycle of monsoon precipitation simulated by models from phase 6 of the Coupled Model Intercomparison Project (CMIP6), then uses moist energy diagnostics to explain globally inhomogeneous projected future changes. Rainy season characteristics are quantified using a consistent method across the globe. Model bias is shown to include rainy season onsets tens of days later than observed in some monsoon regions (India, Australia, and North America) and overly large summer precipitation in others (North America, South America, and southern Africa). Projected next-century changes include rainy season lengthening in the two largest Northern Hemisphere monsoon regions (South Asia and central Sahel) and shortening in the two largest Southern Hemisphere regions (South America and southern Africa). Changes in the North American and Australian monsoons are less coherent across models. To understand these changes, relative moist static energy (MSE) is defined as the difference between local and tropical-mean surface air MSE. Future changes in relative MSE in each region correlate well with onset and demise date changes. Furthermore, Southern Hemisphere regions projected to undergo rainy season shortening are spanned by an increasing equator-to-pole MSE gradient, suggesting their rainfall will be increasingly inhibited by fluxes of dry extratropical air; Northern Hemisphere regions with projected lengthening of rainy seasons undergo little change in equator-to-pole MSE gradient. Thus, although model biases raise questions as to the reliability of some projections, these results suggest that globally inhomogeneous future changes in monsoon timing may be understood through simple measures of surface air MSE.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Rodrigo J. Bombardi, rjbombardi@tamu.edu
Save