• Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 228232, https://doi.org/10.1038/nature01092.

    • Search Google Scholar
    • Export Citation
  • Arora, V. K., and Coauthors, 2011: Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett., 38, L05805, https://doi.org/10.1029/2010GL046270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellprat, O., V. Guemas, F. Doblas-Reyes, and M. G. Donat, 2019: Towards reliable extreme weather and climate event attribution. Nat. Commun., 10, 1732, https://doi.org/10.1038/s41467-019-09729-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, R. A., and Coauthors, 2018: Changes in climate extremes, fresh water availability and vulnerability to food insecurity projected at 1.5°C and 2°C global warming with a higher-resolution global climate model. Philos. Trans. Roy. Soc., 376A, 20160452, https://doi.org/10.1098/rsta.2016.0452.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunner, L., A. G. Pendergrass, F. Lehner, A. L. Merrifield, R. Lorenz, and R. Knutti, 2020: Reduced global warming from CMIP6 projections when weighting models by performance and independence. Earth Syst. Dyn., 11, 9951012, https://doi.org/10.5194/esd-11-995-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cochran, W. G., 1937: Problems arising in the analysis of a series of similar experiments. Suppl. J. Roy. Stat. Soc., 4, 102118, https://doi.org/10.2307/2984123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • DerSimonian, R., and N. Laird, 1986: Meta-analysis in clinical trials. Control. Clin. Trials, 7, 177188, https://doi.org/10.1016/0197-2456(86)90046-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Phillips, V. Bourdette, and H. Teng, 2012: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546, https://doi.org/10.1007/s00382-010-0977-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., and Coauthors, 2020: Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Climate Change, 10, 791, https://doi.org/10.1038/s41558-020-0854-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donlon, C., M. Martin, J. Stark, J. Roberts-Jones, E. Fiedler, and W. Wimmer, 2012: The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sens. Environ., 116, 140158, https://doi.org/10.1016/j.rse.2010.10.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., J. Sedláček, E. Hawkins, and R. Knutti, 2014: Models agree on forced response pattern of precipitation and temperature extremes. Geophys. Res. Lett., 41, 85548562, https://doi.org/10.1002/2014GL062018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., U. Beyerle, C. F. Schleussner, A. D. King, and R. Knutti, 2018: Biased estimates of changes in climate extremes from prescribed SST simulations. Geophys. Res. Lett., 45, 85008509, https://doi.org/10.1029/2018GL079176.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Good, P., B. B. Booth, R. Chadwick, E. Hawkins, A. Jonko, and J. A. Lowe, 2016: Large differences in regional precipitation change between a first and second 2 K of global warming. Nat. Commun., 7, 13667, https://doi.org/10.1038/ncomms13667.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, E., and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90, 10951108, https://doi.org/10.1175/2009BAMS2607.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, E., and R. Sutton, 2011: The potential to narrow uncertainty in projections of regional precipitation change. Climate Dyn., 37, 407418, https://doi.org/10.1007/s00382-010-0810-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, J., and B. Soden, 2016: The impact of SST biases on projections of anthropogenic climate change: A greater role for atmosphere-only models? Geophys. Res. Lett., 43, 77457750, https://doi.org/10.1002/2016GL069803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., M. Winton, K. Takahashi, T. Delworth, F. Zeng, and G. K. Vallis, 2010: Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing. J. Climate, 23, 24182427, https://doi.org/10.1175/2009JCLI3466.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2018: Impacts of 1.5°C global warming on natural and human systems. Global Warming of 1.5°C: An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. V. Masson-Delmotte et al., Eds., IPCC, 175–311.

  • Iturbide, M., and Coauthors, 2020: An update of IPCC climate reference regions for subcontinental analysis of climate model data: Definition and aggregated datasets. Earth Syst. Sci. Data, 12, 29592970, https://doi.org/10.5194/essd-12-2959-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James, R., R. Washington, C.-F. Schleussner, J. Rogelj, and D. Conway, 2017: Characterizing half-a-degree difference: A review of methods for identifying regional climate responses to global warming targets. Wiley Interdiscip. Rev.: Climate Change, 8, e457, https://doi.org/10.1002/wcc.457.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, A. D., D. J. Karoly, and B. J. Henley, 2017: Australian climate extremes at 1.5°C and 2°C of global warming. Nat. Climate Change, 7, 412416, https://doi.org/10.1038/nclimate3296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, A. D., R. Knutti, P. Uhe, D. M. Mitchell, S. C. Lewis, J. M. Arblaster, and N. Freychet, 2018: On the linearity of local and regional temperature changes from 1.5°C to 2°C of global warming. J. Climate, 31, 74957514, https://doi.org/10.1175/JCLI-D-17-0649.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, A. D., T. P. Lane, B. J. Henley, and J. R. Brown, 2020: Global and regional impacts differ between transient and equilibrium warmer worlds. Nat. Climate Change, 10, 4247, https://doi.org/10.1038/s41558-019-0658-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirchmeier-Young, M. C., F. W. Zwiers, and N. P. Gillett, 2017: Attribution of extreme events in Arctic sea ice extent. J. Climate, 30, 553571, https://doi.org/10.1175/JCLI-D-16-0412.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutti, R., 2010: The end of model democracy? Climatic Change, 102, 395404, https://doi.org/10.1007/s10584-010-9800-2.

  • Knutti, R., and J. Sedláček, 2013: Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Climate Change, 3, 369373, https://doi.org/10.1038/nclimate1716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutti, R., R. Furrer, C. Tebaldi, J. Cermak, and G. A. Meehl, 2010: Challenges in combining projections from multiple climate models. J. Climate, 23, 27392758, https://doi.org/10.1175/2009JCLI3361.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutti, R., D. Masson, and A. Gettelman, 2013: Climate model genealogy: Generation CMIP5 and how we got there. Geophys. Res. Lett., 40, 11941199, https://doi.org/10.1002/grl.50256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehner, F., C. Deser, N. Maher, J. Marotzke, E. M. Fischer, L. Brunner, R. Knutti, and E. Hawkins, 2020: Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6. Earth Syst. Dyn., 11, 491508, https://doi.org/10.5194/esd-11-491-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., R. J. Stouffer, M. J. Spelman, and K. Bryan, 1991: Transient responses of a coupled ocean–atmosphere model to gradual changes of atmospheric CO2. Part I: Annual mean response. J. Climate, 4, 785818, https://doi.org/10.1175/1520-0442(1991)004<0785:TROACO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merrifield, A. L., L. Brunner, R. Lorenz, I. Medhaug, and R. Knutti, 2020: An investigation of weighting schemes suitable for incorporating large ensembles into multi-model ensembles. Earth Syst. Dyn., 11, 807834, https://doi.org/10.5194/esd-11-807-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D., R. James, P. M. Forster, R. A. Betts, H. Shiogama, and M. Allen, 2016: Realizing the impacts of a 1.5°C warmer world. Nat. Climate Change, 6, 735737, https://doi.org/10.1038/nclimate3055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D., and Coauthors, 2017: Half a degree additional warming, prognosis and projected impacts (HAPPI): Background and experimental design. Geosci. Model Dev., 10, 571583, https://doi.org/10.5194/gmd-10-571-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, J., and Coauthors, 2019: UKCP18 land projections: Science report. Met Office Tech. Rep., 191 pp., https://www.metoffice.gov.uk/pub/data/weather/uk/ukcp18/science-reports/UKCP18-Land-report.pdf.

  • O’Neill, B. C., and Coauthors, 2016: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev., 9, 34613482, https://doi.org/10.5194/gmd-9-3461-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., F. Lehner, B. M. Sanderson, and Y. Xu, 2015: Does extreme precipitation intensity depend on the emissions scenario? Geophys. Res. Lett., 42, 87678774, https://doi.org/10.1002/2015GL065854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quinn, N., P. D. Bates, and M. Siddall, 2013: The contribution to future flood risk in the Severn Estuary from extreme sea level rise due to ice sheet mass loss. J. Geophys. Res. Oceans, 118, 58875898, https://doi.org/10.1002/jgrc.20412.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanderson, B. M., M. Wehner, and R. Knutti, 2017a: Skill and independence weighting for multi-model assessments. Geosci. Model Dev., 10, 23792395, https://doi.org/10.5194/gmd-10-2379-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanderson, B. M., and Coauthors, 2017b: Community climate simulations to assess avoided impacts in 1.5 and 2°C futures. Earth Syst. Dyn., 8, 827847, https://doi.org/10.5194/esd-8-827-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S., and Coauthors, 2018: The many possible climates from the Paris Agreement’s aim of 1.5°C warming. Nature, 558, 4149, https://doi.org/10.1038/s41586-018-0181-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., S. Bony, and J.-L. Dufresne, 2014: Spread in model climate sensitivity traced to atmospheric convective mixing. Nature, 505, 3742, https://doi.org/10.1038/nature12829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shiogama, H., S. Emori, N. Hanasaki, M. Abe, Y. Masutomi, K. Takahashi, and T. Nozawa, 2011: Observational constraints indicate risk of drying in the Amazon basin. Nat. Commun., 2, 253, https://doi.org/10.1038/ncomms1252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., 2019: Climate science needs to take risk assessment much more seriously. Bull. Amer. Meteor. Soc., 100, 16371642, https://doi.org/10.1175/BAMS-D-18-0280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K., R. L. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., J. M. Arblaster, and R. Knutti, 2011: Mapping model agreement on future climate projections. Geophys. Res. Lett., 38, L23701, https://doi.org/10.1029/2011GL049863.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokarska, K. B., M. B. Stolpe, S. Sippel, E. M. Fischer, C. J. Smith, F. Lehner, and R. Knutti, 2020: Past warming trend constrains future warming in CMIP6 models. Sci. Adv., 6, eaaz9549, https://doi.org/10.1126/sciadv.aaz9549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uhe, P., D. Mitchell, P. Bates, C. Sampson, A. Smith, and A. Islam, 2019: Enhanced flood risk with 1.5°C global warming in the Ganges-Brahmaputra-Meghna basin. Environ. Res. Lett., 14, 074031, https://doi.org/10.1088/1748-9326/ab10ee.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallemacq, P., and R. House, 2018: Economic losses, poverty & disasters: 1998–2017. Centre for Research on the Epidemiology of Disasters (CRED) and United Nations Office for Disaster Risk Reduction (UNISDR) Tech. Rep., 31 pp., https://www.preventionweb.net/go/61119.

  • Wyser, K., G. Strandberg, J. Caesar, and L. Gohar, 2017: Documentation of changes in climate variability and extremes simulated by the HELIX AGCMs at the 3 SWLs and comparison to changes in equivalent SST/SIC low-resolution CMIP5 projections. HELIX, https://helixclimate.eu/working-packages/high-resolution-timeslices-and-regional-downscaling-wp3.

  • Yokohata, T., and Coauthors, 2013: Reliability and importance of structural diversity of climate model ensembles. Climate Dyn., 41, 27452763, https://doi.org/10.1007/s00382-013-1733-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zappa, G., P. Ceppi, and T. G. Shepherd, 2020: Time-evolving sea-surface warming patterns modulate the climate change response of subtropical precipitation over land. Proc. Natl. Acad. Sci. USA, 117, 45394545, https://doi.org/10.1073/pnas.1911015117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., T. A. Myers, D. T. McCoy, S. Po-Chedley, P. M. Caldwell, P. Ceppi, S. A. Klein, and K. E. Taylor, 2020: Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett., 47, e2019GL085782, https://doi.org/10.1029/2019GL085782.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 386 386 69
Full Text Views 119 119 16
PDF Downloads 166 166 22

Method Uncertainty Is Essential for Reliable Confidence Statements of Precipitation Projections

View More View Less
  • 1 School of Geographical Sciences, University of Bristol, Bristol, United Kingdom
  • 2 Environmental Change Institute, University of Oxford, Oxford, United Kingdom
  • 3 Met Office Hadley Centre, Exeter, United Kingdom
  • 4 Global Systems Institute, University of Exeter, Exeter, United Kingdom
  • 5 Centre for Ecology and Hydrology, Wallingford, United Kingdom
  • 6 ARC Centre of Excellence for Climate Extremes, School of Earth Sciences, University of Melbourne, Melbourne, Victoria, Australia
  • 7 European Center for Research and Advanced Training in Scientific Computing, Toulouse, France
  • 8 National Institute for Environmental Studies, Tsukuba, Japan
© Get Permissions
Restricted access

Abstract

Precipitation events cause disruption around the world and will be altered by climate change. However, different climate modeling approaches can result in different future precipitation projections. The corresponding “method uncertainty” is rarely explicitly calculated in climate impact studies and major reports but can substantially change estimated precipitation changes. A comparison across five commonly used modeling activities shows that, for changes in mean precipitation, less than half of the regions analyzed had significant changes between the present climate and 1.5°C global warming for the majority of modeling activities. This increases to just over half of the regions for changes between present climate and 2°C global warming. There is much higher confidence in changes in maximum 1-day precipitation than in mean precipitation, indicating the robust influence of thermodynamics in the climate change effect on extremes. We also find that none of the modeling activities captures the full range of estimates from the other methods in all regions. Our results serve as an uncertainty map to help interpret which regions require a multimethod approach. Our analysis highlights the risk of overreliance on any single modeling activity and the need for confidence statements in major synthesis reports to reflect this method uncertainty. Considering multiple sources of climate projections should reduce the risks of policymakers being unprepared for impacts of warmer climates relative to using single-method projections to make decisions.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0289.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher’s Note: This article was revised on 20 January 2021 to include the addition of several acknowledgments in the Acknowledgments section.

Corresponding author: Peter Uhe, peter.uhe@bristol.ac.uk

Abstract

Precipitation events cause disruption around the world and will be altered by climate change. However, different climate modeling approaches can result in different future precipitation projections. The corresponding “method uncertainty” is rarely explicitly calculated in climate impact studies and major reports but can substantially change estimated precipitation changes. A comparison across five commonly used modeling activities shows that, for changes in mean precipitation, less than half of the regions analyzed had significant changes between the present climate and 1.5°C global warming for the majority of modeling activities. This increases to just over half of the regions for changes between present climate and 2°C global warming. There is much higher confidence in changes in maximum 1-day precipitation than in mean precipitation, indicating the robust influence of thermodynamics in the climate change effect on extremes. We also find that none of the modeling activities captures the full range of estimates from the other methods in all regions. Our results serve as an uncertainty map to help interpret which regions require a multimethod approach. Our analysis highlights the risk of overreliance on any single modeling activity and the need for confidence statements in major synthesis reports to reflect this method uncertainty. Considering multiple sources of climate projections should reduce the risks of policymakers being unprepared for impacts of warmer climates relative to using single-method projections to make decisions.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0289.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher’s Note: This article was revised on 20 January 2021 to include the addition of several acknowledgments in the Acknowledgments section.

Corresponding author: Peter Uhe, peter.uhe@bristol.ac.uk

Supplementary Materials

    • Supplemental Materials (PDF 4.15 MB)
Save