• Allan, R. P., 2011: Climate change: Human influence on rainfall. Nature, 470, 344345, https://doi.org/10.1038/470344a.

  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 228232, https://doi.org/10.1038/nature01092.

    • Search Google Scholar
    • Export Citation
  • Angélil, O., D. Stone, M. Wehner, C. J. Paciorek, H. Krishnan, and W. Collins, 2017: An independent assessment of anthropogenic attribution statements for recent extreme temperature and rainfall events. J. Climate, 30, 516, https://doi.org/10.1175/JCLI-D-16-0077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ban, N., J. Schmidli, and C. Schär, 2015: Heavy precipitation in a changing climate: Does short-term summer precipitation increase faster? Geophys. Res. Lett., 42, 11651172, https://doi.org/10.1002/2014GL062588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, J., S. C. Sherwood, L. V. Alexander, and J. P. Evans, 2017: Future increases in extreme precipitation exceed observed scaling rates. Nat. Climate Change, 7, 128132, https://doi.org/10.1038/nclimate3201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barbero, R., H. J. Fowler, G. Lenderink, and S. Blenkinsop, 2017: Is the intensification of precipitation extremes with global warming better detected at hourly than daily resolutions? Geophys. Res. Lett., 44, 974983, https://doi.org/10.1002/2016GL071917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barbero, R., S. Westra, G. Lenderink, and H. J. Fowler, 2018: Temperature-extreme precipitation scaling: A two-way causality? Int. J. Climatol., 38, e1274e1279, https://doi.org/10.1002/joc.5370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, P., C. Moseley, and J. O. Haerter, 2013: Strong increase in convective precipitation in response to higher temperatures. Nat. Geosci., 6, 181185, https://doi.org/10.1038/ngeo1731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blenkinsop, S., S. C. Chan, E. J. Kendon, N. M. Roberts, and H. J. Fowler, 2015: Temperature influences on intense UK hourly precipitation and dependency on large-scale circulation. Environ. Res. Lett., 10, 054021, https://doi.org/10.1088/1748-9326/10/5/054021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., Y. Lei, C.-H. Sui, X. Lin, and F. Ren, 2012: Tropical cyclone and extreme rainfall trends in East Asian summer monsoon since mid-20th century. Geophys. Res. Lett., 39, L18702, https://doi.org/10.1029/2012GL052945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H. P., and J. Q. Sun, 2017: Contribution of human influence to increased daily precipitation extremes over China. Geophys. Res. Lett., 44, 24362444, https://doi.org/10.1002/2016GL072439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., 2020: Increasingly uneven intra-seasonal distribution of daily and hourly precipitation over Eastern China. Environ. Res. Lett., 15, 104068, https://doi.org/10.1088/1748-9326/abb1f1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., and P. Zhai, 2014: Two types of typical circulation pattern for persistent extreme precipitation in Central–Eastern China. Quart. J. Roy. Meteor. Soc., 140, 14671478, https://doi.org/10.1002/qj.2231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., and P. Zhai, 2016: Mechanisms for concurrent low-latitude circulation anomalies responsible for persistent extreme precipitation in the Yangtze River valley. Climate Dyn., 47, 9891006, https://doi.org/10.1007/s00382-015-2885-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., P. Zhai, and B. Zhou, 2018: Detectable impacts of the past half-degree global warming on summertime hot extremes in China. Geophys. Res. Lett., 45, 71307139, https://doi.org/10.1029/2018GL079216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demaria, E. M. C., P. Hazenberg, R. L. Scott, M. B. Meles, M. Nichols, and D. Goodrich, 2019: Intensification of the North American monsoon rainfall as observed from a long-term high-density gauge network. Geophys. Res. Lett., 46, 68396847, https://doi.org/10.1029/2019GL082461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., and Coauthors, 2020: Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Climate Change, 10, 277286, https://doi.org/10.1038/s41558-020-0731-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N. S., D. Singh, and J. S. Mankin, 2018: Unprecedented climate events: Historical changes, aspirational targets, and national commitments. Sci. Adv., 4, eaao3354, https://doi.org/10.1126/sciadv.aao3354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117142, https://doi.org/10.1007/s00703-005-0125-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donat, M., A. Lowry, L. Alexander, P. A. O’Gorman, and N. Maher, 2016: More extreme precipitation in the world’s dry and wet regions. Nat. Climate Change, 6, 508513, https://doi.org/10.1038/nclimate2941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B., L. J. Wilcox, E. J. Highwood, and R. T. Sutton, 2019: Impacts of recent decadal changes in Asian aerosols on the East Asian summer monsoon: Roles of aerosol–radiation and aerosol–cloud interactions. Climate Dyn., 53, 32353256, https://doi.org/10.1007/s00382-019-04698-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., Z. Q. Xie, and Q. Miao, 2020: Spatial scales of heavy meiyu precipitation events in eastern China and associated atmospheric processes. Geophys. Res. Lett., 46, e2020GL087086, https://doi.org/10.1029/2020GL087086.

    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., and R. Knutti, 2015: Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Climate Change, 5, 560564, https://doi.org/10.1038/nclimate2617.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., and R. Knutti, 2016: Observed heavy precipitation increase confirms theory and early models. Nat. Climate Change, 6, 986991, https://doi.org/10.1038/nclimate3110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., R. W. Knight, D. R. Easterling, T. R. Karl, G. C. Hegerl, and V. N. Razuvaev, 2005: Trends in intense precipitation in the climate record. J. Climate, 18, 13261350, https://doi.org/10.1175/JCLI3339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guerreiro, S. B., and Coauthors, 2018: Detection of continental-scale intensification of hourly rainfall extremes. Nat. Climate Change, 8, 803807, https://doi.org/10.1038/s41558-018-0245-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannart, A., and P. Naveau, 2018: Probabilities of causation of climate changes. J. Climate, 31, 55075524, https://doi.org/10.1175/JCLI-D-17-0304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change. Rev. Geophys., 48, RG4004, https://doi.org/10.1029/2010RG000345.

  • Haustein, K., and Coauthors, 2019: A limited role for unforced internal variability in twentieth-century warming. J. Climate, 32, 48934917, https://doi.org/10.1175/JCLI-D-18-0555.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., and Coauthors, 2010: Good practice guidance paper on detection and attribution related to anthropogenic climate change. IPCC Expert Meeting on Detection and Attribution Related to Anthropogenic Climate Change Rep., T. F Stocker, et al., Eds., University of Bern, 8 pp., https://wg1.ipcc.ch/docs/IPCC_D&A_GoodPracticeGuidancePaper-1.pdf.

  • IPCC, 2018: Global Warming of 1.5°C. V. Masson-Delmotte et al., Eds., Cambridge University Press, 630 pp., https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_Low_Res.pdf.

  • Jiang, X., Y. Luo, D. Zhang, and M. Wu, 2020: Urbanization enhanced summertime extreme hourly precipitation over the Yangtze River delta. J. Climate, 33, 58095826, https://doi.org/10.1175/JCLI-D-19-0884.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendon, E. J., D. P. Rowell, R. G. Jones, and E. Buonomo, 2008: Robustness of future changes in local precipitation extremes. J. Climate, 21, 42804297, https://doi.org/10.1175/2008JCLI2082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendon, E. J., S. Blenkinsop, and H. J. Fowler, 2018: When will we detect changes in short-duration precipitation extremes? J. Climate, 31, 29452964, https://doi.org/10.1175/JCLI-D-17-0435.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirchmeier-Young, M. C., and X. Zhang, 2020: Human influence has intensified extreme precipitation in North America. Proc. Natl. Acad. Sci. USA, 117, 13 30813 313, https://doi.org/10.1073/pnas.1921628117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehner, F., and Coauthors, 2020: Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6. Earth Syst. Dyn., 11, 491508, https://doi.org/10.5194/esd-11-491-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenderink, G., and E. van Meijgaard, 2008: Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci., 1, 511514, https://doi.org/10.1038/ngeo262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenderink, G., R. Barbero, J. M. Loriaux, and H. J. Fowler, 2017: Super-Clausius–Clapeyron scaling of extreme hourly convective precipitation and its relation to large-scale atmospheric conditions. J. Climate, 30, 60376052, https://doi.org/10.1175/JCLI-D-16-0808.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenderink, G., and Coauthors, 2019: Systematic increases in the thermodynamic response of hourly precipitation extremes in an idealized warming experiment with a convection-permitting climate model. Environ. Res. Lett., 14, 074012, https://doi.org/10.1088/1748-9326/ab214a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C., F. Zwiers, X. Zhang, and G. Li, 2019a: How much information is required to well constrain local estimates of future precipitation extremes? Earth’s Future, 7, 1124, https://doi.org/10.1029/2018EF001001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C., and Coauthors, 2019b: Larger increases in more extreme local precipitation events as climate warms. Geophys. Res. Lett., 46, 68856891, https://doi.org/10.1029/2019GL082908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, H. X., H. P. Chen, and H. J. Wang, 2017: Effects of anthropogenic activity emerging as intensified extreme precipitation over China. J. Geophys. Res. Atmos., 122, 68996914, https://doi.org/10.1002/2016JD026251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, P., K. Furtado, T. Zhou, H. Chen, J. Li, and Z. Guo, 2020: The diurnal cycle of East Asian summer monsoon precipitation simulated by the Met Office Unified Model at convection-permitting scales. Climate Dyn., 55, 131151, https://doi.org/10.1007/s00382-018-4368-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, W., Z. Jiang, X. Zhang, and L. Li, 2018: On the emergence of anthropogenic signal in extreme precipitation change over China. Geophys. Res. Lett., 45, 91799185, https://doi.org/10.1029/2018GL079133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, L., Y. Xu, Z. Wang, C. Diao, W. Dong, and S.-P. Xie, 2018: Changes in extreme rainfall over India and China attributed to regional aerosol-cloud interaction during the late 20th century rapid industrialization. Geophys. Res. Lett., 45, 78577865, https://doi.org/10.1029/2018GL078308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lochbihler, K., G. Lenderink, and A. P. Siebesma, 2017: The spatial extent of rainfall events and its relation to precipitation scaling. Geophys. Res. Lett., 44, 86298636, https://doi.org/10.1002/2017GL074857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lochbihler, K., G. Lenderink, and A. P. Siebesma, 2019: Response of extreme precipitating cell structures to atmospheric warming. J. Geophys. Res. Atmos., 124, 69046918, https://doi.org/10.1029/2018JD029954.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, R., Z. Stalhandske, and E. M. Fischer, 2019: Detection of a climate change signal in extreme heat, heat stress, and cold in Europe from observations. Geophys. Res. Lett., 46, 83638374, https://doi.org/10.1029/2019GL082062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, C., F. C. Lott, Y. Sun, P. A. Stott, and N. Christidis, 2020: Detectable anthropogenic influence on changes in summer precipitation in China. J. Climate, 33, 53575369, https://doi.org/10.1175/JCLI-D-19-0285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, Y., M. Wu, F. Ren, J. Li, and W.-K. Wong, 2016: Synoptic situations of extreme hourly precipitation over China. J. Climate, 29, 87038719, https://doi.org/10.1175/JCLI-D-16-0057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, S., and Coauthors, 2017: Detectable anthropogenic shift toward heavy precipitation over eastern China. J. Climate, 30, 13811396, https://doi.org/10.1175/JCLI-D-16-0311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, S., X. Zhang, F. W. Zwiers, and G. C. Hegerl, 2011: Human contribution to more intense precipitation extremes. Nature, 470, 378381, https://doi.org/10.1038/nature09763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molnar, P., S. Fatichi, L. Gaál, J. Szolgay, and P. Burlando, 2015: Storm type effects on super Clausius-Clapeyron scaling of intense rainstorm properties with air temperature. Hydrol. Earth Syst. Sci., 19, 17531766, https://doi.org/10.5194/hess-19-1753-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones, 2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res., 117, D08101, https://doi.org/10.1029/2011JD017187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nie, J., and B. Fan, 2019: Roles of dynamic forcings and diabatic heating in summer extreme precipitation in East China and the southeastern United States. J. Climate, 32, 58155831, https://doi.org/10.1175/JCLI-D-19-0188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nie, J., A. H. Sobel, D. A. Shaevitz, and S. Wang, 2018: Dynamic amplification of extreme precipitation sensitivity. Proc. Natl. Acad. Sci. USA, 115, 94679472, https://doi.org/10.1073/pnas.1800357115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nie, J., P. Dai, and A. H. Sobel, 2020: Dry and moist dynamics shape regional patterns of extreme precipitation sensitivity. Proc. Natl. Acad. Sci. USA, 117, 87578763, https://doi.org/10.1073/pnas.1913584117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norris, J., G. Chen, and J. D. Neelin, 2019: Thermodynamic versus dynamic controls on extreme precipitation in a warming climate from the Community Earth System Model large ensemble. J. Climate, 32, 10251045, https://doi.org/10.1175/JCLI-D-18-0302.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., 2015: Precipitation extremes under climate change. Curr. Climate Change Rep., 1, 4959, https://doi.org/10.1007/s40641-015-0009-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paik, S., S.-K. Min, X. Zhang, M. G. Donat, A. D. King, and Q. Sun, 2020: Determining the anthropogenic greenhouse gas contribution to the observed intensification of extreme precipitation. Geophys. Res. Lett., 47, e2019GL086875, https://doi.org/10.1029/2019GL086875.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., 2018: What precipitation is extreme? Science, 360, 10721073, https://doi.org/10.1126/science.aat1871.

  • Ren, F., G. Wu, W. Dong, X. Wang, Y. Wang, W. Ai, and W. Li, 2006: Changes in tropical cyclone precipitation over China. Geophys. Res. Lett., 33, L20702, https://doi.org/10.1029/2006GL027951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, F., Y. Wang, X. Wang, and W. J. Li, 2007: Estimating tropical cyclone precipitation from station observations. Adv. Atmos. Sci., 24, 700711, https://doi.org/10.1007/s00376-007-0700-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Risser, M. D., and M. F. Wehner, 2017: Attributable human-induced changes in the likelihood and magnitude of the observed extreme precipitation during Hurricane Harvey. Geophys. Res. Lett., 44, 12 45712 464, https://doi.org/10.1002/2017GL075888.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samset, B. H., M. T. Lund, M. Bollasina, G. Hyhre, and L. Wilcox, 2019: Emerging Asian aerosol patterns. Nat. Geosci., 12, 582584, https://doi.org/10.1038/s41561-019-0424-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sarojini, B. B., P. A. Stott, and E. C. L. Black, 2016: Detection and attribution of human influence on regional precipitation. Nat. Climate Change, 6, 669675, https://doi.org/10.1038/nclimate2976.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., and Coauthors, 2016: Percentile indices for assessing changes in heavy precipitation events. Climatic Change, 137, 201216, https://doi.org/10.1007/s10584-016-1669-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schroeer, K., G. Kirchengast, and S. O, 2018: Strong dependence of extreme convective precipitation intensities on gauge network density. Geophys. Res. Lett., 45, 82538263, https://doi.org/10.1029/2018GL077994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s tau. J. Amer. Stat. Assoc., 63, 13791389, https://doi.org/10.1080/01621459.1968.10480934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., M. G. Donat, A. J. Pitman, R. Knutti, and R. L. Wilby, 2016: Allowable CO2 emissions based on regional and impact-related climate targets. Nature, 529, 477483, https://doi.org/10.1038/nature16542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, Y., Z. Jiang, Z. Liu, and L. Li, 2020: A Lagrangian analysis of water vapor sources and pathways for precipitation in East China in different stages of the East Asian summer monsoon. J. Climate, 33, 977992, https://doi.org/10.1175/JCLI-D-19-0089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, F., T. Zhou, and Y. Qian, 2014: Responses of East Asian summer monsoon to natural and anthropogenic forcings in the 17 latest CMIP5 models. Geophys. Res. Lett., 41, 596603, https://doi.org/10.1002/2013GL058705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Q., F. Zwiers, X. Zhang, and G. Li, 2020: A comparison of intra- annual and long-term trend scaling of extreme precipitation with temperature in a large-ensemble regional climate simulation. J. Climate, 33, 92339245, https://doi.org/10.1175/JCLI-D-19-0920.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, F., B. Dong, J. Robson, and R. Sutton, 2018: Forced decadal changes in the East Asian summer monsoon: The roles of greenhouse gases and anthropogenic aerosols. Climate Dyn., 51, 36993715, https://doi.org/10.1007/s00382-018-4105-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., Y. Zhang, and M. Gehne, 2017: Intermittency in precipitation: Duration, frequency, intensity, and amounts using hourly data. J. Hydrometeor., 18, 13931412, https://doi.org/10.1175/JHM-D-16-0263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Utsumi, N., S. Seto, S. Kanae, E. E. Maeda, and T. Oki, 2011: Does higher surface temperature intensify extreme precipitation? Geophys. Res. Lett., 38, L16708, https://doi.org/10.1029/2011GL048426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Utsumi, N., H. Kim, S. Kanae, and T. Oki, 2017: Relative contributions of weather systems to mean and extreme global precipitation. J. Geophys. Res. Atmos. 122, 152167, https://doi.org/10.1002/2016JD025222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vanden Broucke, S., H. Wouters, M. Demuzere, and N. P. M. van Lipzig, 2019: The influence of convection-permitting regional climate modeling on future projections of extreme precipitation: Dependency on topography and timescale. Climate Dyn., 52, 53035324, https://doi.org/10.1007/s00382-018-4454-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Oldenborgh, G. J. K., and Coauthors, 2017: Attribution of extreme rainfall from Hurricane Harvey, August 2017. Environ. Res. Lett., 12, 124009, https://doi.org/10.1088/1748-9326/aa9ef2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., H. Shiogama, H. Tatebe, M. Hayashi, M. Ishii, and M. Kimoto, 2014: Contribution of natural decadal variability to global warming acceleration and hiatus. Nat. Climate Change, 4, 893897, https://doi.org/10.1038/nclimate2355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westra, S., L. V. Alexander, and F. W. Zwiers, 2013: Global increasing trends in annual maximum daily precipitation. J. Climate, 26, 39043918, https://doi.org/10.1175/JCLI-D-12-00502.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westra, S., and Coauthors, 2014: Future changes to the intensity and frequency of short-duration extreme rainfall. Rev. Geophys., 52, 522555, https://doi.org/10.1002/2014RG000464.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1997: Resampling hypothesis tests for autocorrelated fields. J. Climate, 10, 6582, https://doi.org/10.1175/1520-0442(1997)010<0065:RHTFAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. Elsevier, 648 pp.

  • Witze, A., 2018: Why extreme rains are gaining strength as the climate warms. Nature, 563, 458460, https://doi.org/10.1038/d41586-018-07447-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, M., Y. Luo, F. Chen, and W. K. Wong, 2019: Observed link of extreme hourly precipitation changes to urbanization over coastal South China. J. Appl. Meteor. Climatol., 58, 17991819, https://doi.org/10.1175/JAMC-D-18-0284.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, J., T. Zhou, Z. Guo, X. Chen, L. Zou, and Y. Sun, 2017: Improved performance of high-resolution atmospheric models in simulating the East Asian summer monsoon rain belt. J. Climate, 30, 88258840, https://doi.org/10.1175/JCLI-D-16-0372.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ye, H. C., E. J. Fetzer, S. Wong, and B. H. Lambrigtsen, 2017: Rapid decadal convective precipitation increase over Eurasia during the last three decades of the 20th century. Sci. Adv., 3, e1600944, https://doi.org/10.1126/sciadv.1600944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, R., and J. Li, 2012: Hourly rainfall changes in response to surface air temperature over eastern contiguous China. J. Climate, 25, 68516861, https://doi.org/10.1175/JCLI-D-11-00656.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, P., X. Zhang, H. Wan, and X. Pan, 2005: Trends in total precipitation and frequency of daily precipitation extremes over China. J. Climate, 18, 10961108, https://doi.org/10.1175/JCLI-3318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, H., and P. Zhai, 2011: Temporal and spatial characteristics of extreme hourly precipitation over eastern China in the warm season. Adv. Atmos. Sci., 28, 11771183, https://doi.org/10.1007/s00376-011-0020-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., T. Zhao, A. Dai, and W. Zhang, 2019: Detection and attribution of atmospheric precipitable water changes since the 1970s over China. Sci. Rep., 9, 17 609, https://doi.org/10.1038/s41598-019-54185-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., 2015: Changes in East Asian summer monsoon and summer rainfall over eastern China during recent decades. Sci. Bull., 60, 12221224, https://doi.org/10.1007/s11434-015-0824-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., and T. Zhou, 2019: Significant increases in extreme precipitation and the associations with global warming over the global land monsoon regions. J. Climate, 32, 84658488, https://doi.org/10.1175/JCLI-D-18-0662.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., T. Zhou, L. Zou, L. Zhang, and X. Chen, 2018: Reduced exposure to extreme precipitation from 0.5°C less warming in global land monsoon regions. Nat. Commun., 9, 3153, https://doi.org/10.1038/s41467-018-05633-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., T. Zhou, L. Zhang, and L. W. Zou, 2019: Future intensification of the water cycle with an enhanced annual cycle over global land monsoon regions. J. Climate, 32, 54375452, https://doi.org/10.1175/JCLI-D-18-0628.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., F. W. Zwiers, G. Li, H. Wan, and A. J. Cannon, 2017: Complexity in estimating past and future extreme short-duration rainfall. Nat. Geosci., 10, 255259, https://doi.org/10.1038/ngeo2911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, A. D., D. S. Stevenson, and M. A. Bollasina, 2019: The role of anthropogenic aerosols in future precipitation extremes over the Asian monsoon region. Climate Dyn., 52, 62576278, https://doi.org/10.1007/s00382-018-4514-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, F., S. Westra, and M. Leonard, 2015: Opposing local precipitation extremes. Nat. Climate Change, 5, 389390, https://doi.org/10.1038/nclimate2579.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T., and Coauthors, 2016: GMMIP (v1.0) contribution to CMIP6: Global Monsoons Model Inter-comparison Project. Geosci. Model Dev., 9, 35893604, https://doi.org/10.5194/gmd-9-3589-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T., W. Zhang, L. Zhang, X. Zhang, Y. Qian, D. Peng, S. Ma, and B. Dong, 2020: The dynamic and thermodynamic processes dominating the reduction of global land monsoon precipitation driven by anthropogenic aerosols emission. Sci. China Earth Sci., 63, 919933, https://doi.org/10.1007/s11430-019-9613-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 221 221 89
Full Text Views 54 54 22
PDF Downloads 87 87 34

Detectable Intensification of Hourly and Daily Scale Precipitation Extremes across Eastern China

View More View Less
  • 1 State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China
  • 2 Technical Support Unit, Working Group I, IPCC, Université Paris Saclay, Paris, France
  • 3 Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China
© Get Permissions
Restricted access

Abstract

Detecting long-term changes in precipitation extremes over monsoon regions remains challenging due to large observational uncertainty, high internal variability at the regional scale, and climate models’ deficiency in simulating monsoon physics. This is particularly true for Eastern China, as illustrated by limited yet controversial detection results for daily scale precipitation extremes and the lack of detection analysis on hourly scale extremes there. Relying on high-quality gauge observations, two complementary techniques are used to detect the footprint of anthropogenic forcings in observed changes in both hourly and daily scale precipitation extremes across Eastern China. Results show that, scaled with global-mean surface temperature during 1970–2017, the regional-scale intensification nearly doubles the Clausius–Clapeyron rate (C-C; ~6.5% °C−1) for the wettest 10 h in the period and almost triples the C-C rate for the top 10 heaviest daily precipitation extremes. The intensification at both time scales, as well as the resulting increase in frequency, is discernibly stronger and more widespread than expected due to random internal variability. This not only lends supports to the model-based detection of forced trends for daily scale precipitation extremes, but it also suggests that anthropogenic warming has already be intensifying hourly scale precipitation extremes in this monsoon region. The magnitude and detectability of observed changes arise primarily from systematic intensification of non-tropical-cyclone-related precipitation extremes in response to the past warming.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yang Chen, ychen@cma.gov.cn

Abstract

Detecting long-term changes in precipitation extremes over monsoon regions remains challenging due to large observational uncertainty, high internal variability at the regional scale, and climate models’ deficiency in simulating monsoon physics. This is particularly true for Eastern China, as illustrated by limited yet controversial detection results for daily scale precipitation extremes and the lack of detection analysis on hourly scale extremes there. Relying on high-quality gauge observations, two complementary techniques are used to detect the footprint of anthropogenic forcings in observed changes in both hourly and daily scale precipitation extremes across Eastern China. Results show that, scaled with global-mean surface temperature during 1970–2017, the regional-scale intensification nearly doubles the Clausius–Clapeyron rate (C-C; ~6.5% °C−1) for the wettest 10 h in the period and almost triples the C-C rate for the top 10 heaviest daily precipitation extremes. The intensification at both time scales, as well as the resulting increase in frequency, is discernibly stronger and more widespread than expected due to random internal variability. This not only lends supports to the model-based detection of forced trends for daily scale precipitation extremes, but it also suggests that anthropogenic warming has already be intensifying hourly scale precipitation extremes in this monsoon region. The magnitude and detectability of observed changes arise primarily from systematic intensification of non-tropical-cyclone-related precipitation extremes in response to the past warming.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yang Chen, ychen@cma.gov.cn
Save