• Alkama, R., and A. Cescatti, 2016: Biophysical climate impacts of recent changes in global forest cover. Science, 351, 600604, https://doi.org/10.1126/science.aac8083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alves, L. M., J. A. Marengo, R. Fu, and R. J. Bombardi, 2017: Sensitivity of Amazon regional climate to deforestation. Amer. J. Climate Change, 6, 7598, https://doi.org/10.4236/ajcc.2017.61005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Badger, A. M., and P. A. Dirmeyer, 2016: Remote tropical and sub-tropical responses to Amazon deforestation. Climate Dyn., 46, 30573066, https://doi.org/10.1007/s00382-015-2752-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baidya Roy, S., and R. Avissar, 2002: Impact of land use/land cover change on regional hydrometeorology in Amazonia. J. Geophys. Res., 107, 8037, https://doi.org/10.1029/2000JD000266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barros, V. R., J. A. Boninsegna, I. A. Camilloni, M. Chidiak, G. O. Magrín, and M. Rusticucci, 2015: Climate change in Argentina: Trends, projections, impacts and adaptation. Wiley Interdiscip. Rev.: Climate Change, 6, 151169, https://doi.org/10.1002/wcc.316.

    • Search Google Scholar
    • Export Citation
  • Boulton, C. A., P. Good, and T. M. Lenton, 2013: Early warning signals of simulated Amazon rainforest dieback. Theor. Ecol., 6, 373384, https://doi.org/10.1007/s12080-013-0191-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boulton, C. A., B. B. B. Booth, and P. Good, 2017: Exploring uncertainty of Amazon dieback in a perturbed parameter Earth system ensemble. Global Change Biol., 23, 50325044, https://doi.org/10.1111/gcb.13733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brienen, R. J. W., and Coauthors, 2015: Long-term decline of the Amazon carbon sink. Nature, 519, 344348, https://doi.org/10.1038/nature14283.

  • Cavalcante, R. B. L., P. R. M. Pontes, P. W. M. Souza-Filho, and E. B. de Souza, 2019: Opposite effects of climate and land use changes on the annual water balance in the Amazon arc of deforestation. Water Resour. Res., 55, 30923106, https://doi.org/10.1029/2019WR025083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., and P. A. Dirmeyer, 2019: Differing responses of the diurnal cycle of land surface and air temperatures to deforestation. J. Climate, 32, 70677079, https://doi.org/10.1175/JCLI-D-19-0002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., and P. A. Dirmeyer, 2020: Reconciling the disagreement between observed and simulated temperature responses to deforestation. Nat. Commun., 11, 202, https://doi.org/10.1038/s41467-019-14017-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cochrane, M. A., and C. P. Barber, 2009: Climate change, human land use and future fires in the Amazon. Global Change Biol., 15, 601612, https://doi.org/10.1111/j.1365-2486.2008.01786.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohn, A. S., N. Bhattarai, J. Campolo, O. Crompton, D. Dralle, J. Duncan, and S. Thompson, 2019: Forest loss in Brazil increases maximum temperatures within 50 km. Environ. Res. Lett., 14, 084047, https://doi.org/10.1088/1748-9326/ab31fb.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, P. M., R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, 2000: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184187, https://doi.org/10.1038/35041539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, P. M., R. A. Betts, M. Collins, P. P. Harris, C. Huntingford, and C. D. Jones, 2004: Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theor. Appl. Climatol., 78, 137156, https://doi.org/10.1007/s00704-004-0049-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Da Rocha, H. R., and Coauthors, 2009: Patterns of water and heat flux across a biome gradient from tropical forest to savanna in Brazil. J. Geophys. Res. Biogeosci., 114, G00B12, https://doi.org/10.1029/2007JG000640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davidson, E. A., and Coauthors, 2012: The Amazon basin in transition. Nature, 481, 321328, https://doi.org/10.1038/nature10717.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delire, C., N. de Noblet-Ducoudré, A. Sima, and I. Gouirand, 2011: Vegetation dynamics enhancing long-term climate variability confirmed by two models. J. Climate, 24, 22382257, https://doi.org/10.1175/2010JCLI3664.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duveiller, G., J. Hooker, and A. Cescatti, 2018: The mark of vegetation change on Earth’s surface energy balance. Nat. Commun., 9, 679, https://doi.org/10.1038/s41467-017-02810-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., and R. L. Bras, 1994: Precipitation recycling in the Amazon basin. Quart. J. Roy. Meteor. Soc., 120, 861880, https://doi.org/10.1002/qj.49712051806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erfanian, A., and G. Wang, 2018: Explicitly accounting for the role of remote oceans in regional climate modeling of South America. J. Adv. Model. Earth Syst., 10, 24082426, https://doi.org/10.1029/2018MS001444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erfanian, A., G. Wang, and L. Fomenko, 2017a: Unprecedented drought over tropical South America in 2016: Significantly under-predicted by tropical SST. Sci. Rep., 7, 5811, https://doi.org/10.1038/s41598-017-05373-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erfanian, A., G. Wang, L. Fomenko, and M. Yu, 2017b: Ensemble-based Reconstructed Forcing (ERF) for regional climate modeling: Attaining the performance at a fraction of cost. Geophys. Res. Lett., 44, 32903298, https://doi.org/10.1002/2017GL073053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fearnside, P. M., 2005: Deforestation in Brazilian Amazonia: History, rates, and consequences. Conserv. Biol., 19, 680688, https://doi.org/10.1111/j.1523-1739.2005.00697.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldpausch, T. R., and Coauthors, 2012: Tree height integrated into pantropical forest biomass estimates. Biogeosciences, 9, 33813403, https://doi.org/10.5194/bg-9-3381-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, R., and W. Li, 2004: The influence of the land surface on the transition from dry to wet season in Amazonia. Theor. Appl. Climatol., 78, 97110, https://doi.org/10.1007/s00704-004-0046-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gedney, N., and P. J. Valdes, 2000: The effect of Amazonian deforestation on the Northern Hemisphere circulation and climate. Geophys. Res. Lett., 27, 30533056, https://doi.org/10.1029/2000GL011794.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and Coauthors, 2012: RegCM4: Model description and preliminary tests over multiple CORDEX domains. Climate Res., 52, 729, https://doi.org/10.3354/cr01018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, M. C., Y. E. Shimabukuro, P. Potapov, and K. Pittman, 2008: Comparing annual MODIS and PRODES forest cover change data for advancing monitoring of Brazilian forest cover. Remote Sens. Environ., 112, 37843793, https://doi.org/10.1016/j.rse.2008.05.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, M. C., and Coauthors, 2013: High-resolution global maps of 21st-century forest cover change. Science, 342, 850853, https://doi.org/10.1126/SCIENCE.1244693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasler, N., D. Werth, and R. Avissar, 2009: Effects of tropical deforestation on global hydroclimate: A multimodel ensemble analysis. J. Climate, 22, 11241141, https://doi.org/10.1175/2008JCLI2157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herold, M., and Coauthors, 2011: A review of methods to measure and monitor historical carbon emissions from forest degradation. Unasylva, 62, 1624.

    • Search Google Scholar
    • Export Citation
  • Hilker, T., A. I. Lyapustin, F. G. Hall, R. Myneni, Y. Knyazikhin, Y. Wang, C. J. Tucker, and P. J. Sellers, 2015: On the measurability of change in Amazon vegetation from MODIS. Remote Sens. Environ., 166, 233242, https://doi.org/10.1016/j.rse.2015.05.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirota, M., M. D. Oyama, and C. Nobre, 2011: Concurrent climate impacts of tropical South America land-cover change. Atmos. Sci. Lett., 12, 261267, https://doi.org/10.1002/asl.329.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houghton, R. A., D. L. Skole, C. A. Nobre, J. L. Hackler, K. T. Lawrence, and W. H. Chomentowski, 2000: Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon. Nature, 403, 301304, https://doi.org/10.1038/35002062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houspanossian, J., R. Giménez, E. Jobbágy, and M. Nosetto, 2017: Surface albedo raise in the South American Chaco: Combined effects of deforestation and agricultural changes. Agric. For. Meteor., 232, 118127, https://doi.org/10.1016/j.agrformet.2016.08.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huete, A., K. Didan, T. Miura, E. P. Rodriguez, X. Gao, and L. G. Ferreira, 2002: Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ., 83, 195213, https://doi.org/10.1016/S0034-4257(02)00096-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurtt, G. C., and Coauthors, 2011: Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change, 109, 117161, https://doi.org/10.1007/s10584-011-0153-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Imbach, P., M. Manrow, E. Barona, A. Barretto, G. Hyman, and P. Ciais, 2015: Spatial and temporal contrasts in the distribution of crops and pastures across Amazonia: A new agricultural land use data set from census data since 1950. Global Biogeochem. Cycles, 29, 898916, https://doi.org/10.1002/2014GB004999.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khanna, J., D. Medvigy, S. Fueglistaler, and R. Walko, 2017: Regional dry-season climate changes due to three decades of Amazonian deforestation. Nat. Climate Change, 7, 200204, https://doi.org/10.1038/nclimate3226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, D., and K. Vandecar, 2015: Effects of tropical deforestation on climate and agriculture. Nat. Climate Change, 5, 2736, https://doi.org/10.1038/nclimate2430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and Coauthors, 2011: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Syst., 3, M03001, https://doi.org/10.1029/2011MS00045.

    • Search Google Scholar
    • Export Citation
  • Lawrence, P. J., and T. N. Chase, 2007: Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0). J. Geophys. Res. Biogeosci., 112, G01023, https://doi.org/10.1029/2006JG000168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lean, J., and D. A. Warrilow, 1989: Simulation of the regional climatic impact of Amazon deforestation. Nature, 342, 411413, https://doi.org/10.1038/342411a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leite-Filho, A. T., M. H. Costa, and R. Fu, 2019: The southern Amazon rainy season: The role of deforestation and its interactions with large-scale mechanisms. Int. J. Climatol., 40, 23282341, https://doi.org/10.1002/JOC.6335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lejeune, Q., E. L. Davin, B. P. Guillod, and S. I. Seneviratne, 2015: Influence of Amazonian deforestation on the future evolution of regional surface fluxes, circulation, surface temperature and precipitation. Climate Dyn., 44, 27692786, https://doi.org/10.1007/s00382-014-2203-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, W., and R. Fu, 2004: Transition of the large-scale atmospheric and land surface conditions from the dry to the wet season over Amazonia as diagnosed by the ECMWF Re-Analysis. J. Climate, 17, 26372651, https://doi.org/10.1175/1520-0442(2004)017<2637:TOTLAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., M. Zhao, S. Motesharrei, Q. Mu, E. Kalnay, and S. Li, 2015: Local cooling and warming effects of forests based on satellite observations. Nat. Commun., 6, 6603, https://doi.org/10.1038/ncomms7603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W., G. Wang, M. Yu, H. Chen, and Y. Jiang, 2020a: Multimodel future projections of the regional vegetation-climate system over East Asia: Comparison between two ensemble approaches. J. Geophys. Res. Atmos., 125, e2019JD031967, https://doi.org/10.1029/2019JD031967.

    • Search Google Scholar
    • Export Citation
  • Liu, W., G. Wang, M. Yu, H. Chen, Y. Jiang, M. Jiang, and Y. Shi, 2020b: Projecting the future vegetation–climate system over East Asia and its RCP-dependence. Climate Dyn., 55, 27252742, https://doi.org/10.1007/s00382-020-05411-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malhi, Y., J. T. Roberts, R. A. Betts, T. J. Killeen, W. Li, and C. A. Nobre, 2008: Climate change, deforestation, and the fate of the Amazon. Science, 319, 169172, https://doi.org/10.1126/science.1146961.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malhi, Y., and Coauthors, 2009: Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl. Acad. Sci. USA, 106, 20 61020 615, https://doi.org/10.1073/pnas.0804619106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milodowski, D. T., E. T. A. Mitchard, and M. Williams, 2017: Forest loss maps from regional satellite monitoring systematically underestimate deforestation in two rapidly changing parts of the Amazon. Environ. Res. Lett., 12, 094003, https://doi.org/10.1088/1748-9326/aa7e1e.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morton, D. C., R. S. DeFries, Y. E. Shimabukuro, L. O. Anderson, F. Del Bon Espírito-Santo, M. Hansen, and M. Carroll, 2005: Rapid assessment of annual deforestation in the Brazilian Amazon using MODIS data. Earth Interact., 9 (8), 122, https://doi.org/10.1175/EI139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nobre, C. A., and L. D. S. Borma, 2009: ‘Tipping points’ for the Amazon forest. Curr. Opin. Environ. Sustainability, 1, 2836, https://doi.org/10.1016/j.cosust.2009.07.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2013: Technical description of version 4.5 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-503+STR, 420 pp., https://doi.org/10.5065/D6RR1W7M.

    • Crossref
    • Export Citation
  • Patton, E. G., P. P. Sullivan, and C.-H. Moeng, 2005: The influence of idealized heterogeneity on wet and dry planetary boundary layers coupled to the land surface. J. Atmos. Sci., 62, 20782097, https://doi.org/10.1175/JAS3465.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PRODES, 2013: Monitoramento da floresta Amazônica Brasileira por satélite. Instituto Nacional de Pesquisas Espaciais Project PRODES, http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes.

  • Rammig, A., and Coauthors, 2010: Estimating the risk of Amazonian forest dieback. New Phytol., 187, 694706, https://doi.org/10.1111/j.1469-8137.2010.03318.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rochedo, P. R. R., and Coauthors, 2018: The threat of political bargaining to climate mitigation in Brazil. Nat. Climate Change, 8, 695698, https://doi.org/10.1038/s41558-018-0213-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sampaio, G., C. Nobre, M. H. Costa, P. Satyamurty, B. S. Soares-Filho, and M. Cardoso, 2007: Regional climate change over eastern Amazonia caused by pasture and soybean cropland expansion. Geophys. Res. Lett., 34, L17709, https://doi.org/10.1029/2007GL030612.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Satyamurty, P., C. P. W. da Costa, and A. O. Manzi, 2013: Moisture source for the Amazon basin: A study of contrasting years. Theor. Appl. Climatol., 111, 195209, https://doi.org/10.1007/s00704-012-0637-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, N. M., P. J. Lawrence, and X. Lee, 2017: Global satellite data highlights the diurnal asymmetry of the surface temperature response to deforestation. J. Geophys. Res. Biogeosci., 122, 903917, https://doi.org/10.1002/2016JG003653.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, Y., M. Yu, A. Erfanian, and G. Wang, 2018: Modeling the dynamic vegetation–climate system over China using a coupled regional model. J. Climate, 31, 60276049, https://doi.org/10.1175/JCLI-D-17-0191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skole, D., and C. Tucker, 1993: Tropical deforestation and habitat fragmentation in the Amazon: Satellite data from 1978 to 1988. Science, 260, 19051910, https://doi.org/10.1126/SCIENCE.260.5116.1905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soares-Filho, B., R. Rajão, M. Macedo, A. Carneiro, W. Costa, M. Coe, H. Rodrigues, and A. Alencar, 2014: Cracking Brazil’s forest code. Science, 260, 19051910, https://doi.org/10.1126/SCIENCE.1246663.

    • Search Google Scholar
    • Export Citation
  • Souza-Filho, P. W. M., E. B. de Souza, R. O. S. Júnior, W. R. Nascimento Jr., B. R. V. de Mendonça, J. T. F. Guimarães, R. Dall’Agnol, and J. O. Siqueira, 2016: Four decades of land-cover, land-use and hydroclimatology changes in the Itacaiúnas River watershed, southeastern Amazon. J. Environ. Manage., 167, 175184, https://doi.org/10.1016/j.jenvman.2015.11.039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, S., and G. Wang, 2011: Diagnosing the equilibrium state of a coupled global biosphere-atmosphere model. J. Geophys. Res., 116, D09108, https://doi.org/10.1029/2010JD015224.

    • Search Google Scholar
    • Export Citation
  • Swann, A. L. S., M. Longo, R. G. Knox, E. Lee, and P. R. Moorcroft, 2015: Future deforestation in the Amazon and consequences for South American climate. Agric. For. Meteor., 214–215, 1224, https://doi.org/10.1016/j.agrformet.2015.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tollefson, J., 2016: Political upheaval threatens Brazil’s environmental protections. Nature, 539, 147148, https://doi.org/10.1038/539147A.

  • van der Ent, R. J., H. H. G. Savenije, B. Schaefli, and S. C. Steele-Dunne, 2010: Origin and fate of atmospheric moisture over continents. Water Resour. Res., 46, W09525, https://doi.org/10.1029/2010WR009127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verbesselt, J., N. Umlauf, M. Hirota, M. Holmgren, E. H. Van Nes, M. Herold, A. Zeileis, and M. Scheffer, 2016: Remotely sensed resilience of tropical forests. Nat. Climate Change, 6, 10281031, https://doi.org/10.1038/nclimate3108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Randow, R. C. S., C. von Randow, R. W. A. Hutjes, J. Tomasella, and B. Kruijt, 2012: Evapotranspiration of deforested areas in central and southwestern Amazonia. Theor. Appl. Climatol., 109, 205220, https://doi.org/10.1007/s00704-011-0570-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., and E. A. B. Eltahir, 2000a: Role of vegetation dynamics in enhancing the low-frequency variability of the Sahel rainfall. Water Resour. Res., 36, 10131021, https://doi.org/10.1029/1999WR900361.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., and E. A. B. Eltahir, 2000b: Biosphere–atmosphere interactions over West Africa. I: Development and validation of a coupled dynamic model. Quart. J. Roy. Meteor. Soc., 126, 12391260, https://doi.org/10.1002/qj.49712656503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., S. Sun, and R. Mei, 2011: Vegetation dynamics contributes to the multi-decadal variability of precipitation in the Amazon region. Geophys. Res. Lett., 38, L19703, https://doi.org/10.1029/2011GL049017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., M. Yu, J. S. Pal, R. Mei, G. B. Bonan, S. Levis, and P. E. Thornton, 2016a: On the development of a coupled regional climate–vegetation model RCM–CLM–CN–DV and its validation in tropical Africa. Climate Dyn., 46, 515539, https://doi.org/10.1007/s00382-015-2596-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., M. Yu, and Y. Xue, 2016b: Modeling the potential contribution of land cover changes to the late twentieth century Sahel drought using a regional climate model: Impact of lateral boundary conditions. Climate Dyn., 47, 34573477, https://doi.org/10.1007/s00382-015-2812-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., and Coauthors, 2009: Impact of deforestation in the Amazon basin on cloud climatology. Proc. Natl. Acad. Sci. USA, 106, 36703674, https://doi.org/10.1073/pnas.0810156106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, M., G. Wang, and J. S. Pal, 2016: Effects of vegetation feedback on future climate change over West Africa. Climate Dyn., 46, 36693688, https://doi.org/10.1007/s00382-015-2795-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zemp, D. C., and Coauthors, 2017: Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nat. Commun., 8, 14681, https://doi.org/10.1038/ncomms14681.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeppetello, L. V., L. Parsons, J. Spector, R. Naylor, D. Battisti, Y. Masuda, and N. H. Wolff, 2020: Large scale tropical deforestation drives extreme warming. Environ. Res. Lett., 15, 084012, https://doi.org/10.1088/1748-9326/ab96d2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 690 690 48
Full Text Views 106 106 14
PDF Downloads 127 127 15

Modeled Response of South American Climate to Three Decades of Deforestation

View More View Less
  • 1 Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut
  • | 2 Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, Connecticut
  • | 3 Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China
  • | 4 International Joint Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing, China
  • | 5 Joint Institute for Regional Earth System Science and Engineering, Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, California
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

This study investigates the potential effects of historical deforestation in South America using a regional climate model driven with reanalysis data. Two different sources of data were used to quantify deforestation during the 1980s to 2010s, leading to two scenarios of forest loss: smaller but spatially continuous in scenario 1 and larger but spatially scattered in scenario 2. The model simulates a generally warmer and drier local climate following deforestation. Vegetation canopy becomes warmer due to reduced canopy evapotranspiration, and ground becomes warmer due to more radiation reaching the ground. The warming signal for surface air is weaker than for ground and vegetation, likely due to reduced surface roughness suppressing the sensible heat flux. For surface air over deforested areas, the warming signal is stronger for the nighttime minimum temperature and weaker or even becomes a cooling signal for the daytime maximum temperature, due to the strong radiative effects of albedo at midday, which reduces the diurnal amplitude of temperature. The drying signals over deforested areas include lower atmospheric humidity, less precipitation, and drier soil. The model identifies the La Plata basin as a region remotely influenced by deforestation, where a simulated increase of precipitation leads to wetter soil, higher ET, and a strong surface cooling. Over both deforested and remote areas, the deforestation-induced surface climate changes are much stronger in scenario 2 than scenario 1; coarse-resolution data and models (such as in scenario 1) cannot represent the detailed spatial structure of deforestation and underestimate its impact on local and regional climates.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0380.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Guiling Wang, guiling.wang@uconn.edu

Abstract

This study investigates the potential effects of historical deforestation in South America using a regional climate model driven with reanalysis data. Two different sources of data were used to quantify deforestation during the 1980s to 2010s, leading to two scenarios of forest loss: smaller but spatially continuous in scenario 1 and larger but spatially scattered in scenario 2. The model simulates a generally warmer and drier local climate following deforestation. Vegetation canopy becomes warmer due to reduced canopy evapotranspiration, and ground becomes warmer due to more radiation reaching the ground. The warming signal for surface air is weaker than for ground and vegetation, likely due to reduced surface roughness suppressing the sensible heat flux. For surface air over deforested areas, the warming signal is stronger for the nighttime minimum temperature and weaker or even becomes a cooling signal for the daytime maximum temperature, due to the strong radiative effects of albedo at midday, which reduces the diurnal amplitude of temperature. The drying signals over deforested areas include lower atmospheric humidity, less precipitation, and drier soil. The model identifies the La Plata basin as a region remotely influenced by deforestation, where a simulated increase of precipitation leads to wetter soil, higher ET, and a strong surface cooling. Over both deforested and remote areas, the deforestation-induced surface climate changes are much stronger in scenario 2 than scenario 1; coarse-resolution data and models (such as in scenario 1) cannot represent the detailed spatial structure of deforestation and underestimate its impact on local and regional climates.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0380.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Guiling Wang, guiling.wang@uconn.edu

Supplementary Materials

    • Supplemental Materials (PDF 586.94 KB)
Save