• Alexander, M. J., 1996: A simulated spectrum of convectively generated gravity waves: Propagation from the tropopause to the mesopause and effects on the middle atmosphere. J. Geophys. Res., 101, 15711588, https://doi.org/10.1029/95JD02046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., 2015: Global and seasonal variations in three-dimensional gravity wave momentum flux from satellite limb-sounding temperatures. Geophys. Res. Lett., 42, 68606867, https://doi.org/10.1002/2015GL065234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and D. A. Ortland, 2010: Equatorial waves in High Resolution Dynamics Limb Sounder (HIRDLS) data. J. Geophys. Res., 115, D24111, https://doi.org/10.1029/2010JD014782.

    • Search Google Scholar
    • Export Citation
  • Alexander, S. P., T. Tsuda, and Y. Kawatani, 2008a: COSMIC GPS observations of Northern Hemisphere winter stratospheric gravity waves and comparisons with an atmospheric general circulation model. Geophys. Res. Lett., 35, L10808, https://doi.org/10.1029/2008GL033174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, S. P., T. Tsuda, Y. Kawatani, and M. Takahashi, 2008b: Global distribution of atmospheric waves in the equatorial upper troposphere and lower stratosphere: COSMIC observations of wave mean flow interactions. J. Geophys. Res., 113, D24115, https://doi.org/10.1029/2008JD010039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, S. P., A. R. Klekociuk, A. J. McDonald, and M. C. Pitts, 2013: Quantifying the role of orographic gravity waves on polar stratospheric cloud occurrence in the Antarctic and the Arctic. J. Geophys. Res. Atmos., 118, 11 49311 507, https://doi.org/10.1002/2013JD020122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Angerer, B., F. Ladstädter, B. Scherllin-Pirscher, M. Schwärz, A. K. Steiner, U. Foelsche, and G. Kirchengast, 2017: Quality aspects of the Wegener Center multi-satellite GPS radio occultation record OPSv5.6. Atmos. Meas. Tech., 10, 48454863, https://doi.org/10.5194/amt-10-4845-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., and W. S. Schreiner, 2019: Six new satellites watch the atmosphere over Earth’s equator. Eos, 100, https://doi.org/10.1029/2019EO131779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., C. Rocken, and Y.-H. Kuo, 2000: Applications of COSMIC to meteorology and climate. Terr. Atmos. Ocean. Sci., 11, 115156, https://doi.org/10.3319/TAO.2000.11.1.115(COSMIC).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., and Coauthors, 2008: The COSMIC/FORMOSAT-3 mission: Early results. Bull. Amer. Meteor. Soc., 89, 313334, https://doi.org/10.1175/BAMS-89-3-313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ao, C. O., and A. J. Hajj, 2013: Monitoring the width of the tropical belt with GPS radio occultation measurements. Geophys. Res. Lett., 40, 62366241, https://doi.org/10.1002/2013GL058203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ao, C. O., W. S. Schreiner, and J. Wickert, 2003: First report on the CHAMP radio occultation intercomparison study. JPL Publ. 03-016.

  • Ao, C. O., G. A. Hajj, B. A. Iijima, A. J. Mannucci, T. M. Schrøder, M. de la Torre Juérez, and S. S. Leroy, 2006: Sensitivity of stratospheric retrievals from radio occultations on upper boundary conditions. Atmosphere and Climate: Studies by Occultation Methods, U. Foelsche, G. Kirchengast, and A. K. Steiner, Eds., Springer, 17–26.

    • Crossref
    • Export Citation
  • Ao, C. O., A. J. Mannucci, and E. R. Kursinski, 2012: Improving GPS radio occultation stratospheric refractivity retrievals for climate benchmarking. Geophys. Res. Lett., 39, L12701, https://doi.org/10.1029/2012GL051720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ao, C. O., and Coauthors, 2015: Evaluation of CMIP5 upper troposphere and lower stratosphere geopotential height with GPS radio occultation observations. J. Geophys. Res. Atmos., 120, 16781689, https://doi.org/10.1002/2014JD022239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and Coauthors, 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 179229, https://doi.org/10.1029/1999RG000073.

  • Bell, S. W., and M. A. Geller, 2008: Tropopause inversion layer: Seasonal and latitudinal variations and representation in standard radiosonde data and global models. J. Geophys. Res., 113, D05109, https://doi.org/10.1029/2007JD009022.

    • Search Google Scholar
    • Export Citation
  • Biondi, R., T. Neubert, S. Syndergaard, and J. K. Nielsen, 2011a: Measurements of the upper troposphere and lower stratosphere during tropical cyclones using the GPS radio occultation technique. Adv. Space Res., 47, 348355, https://doi.org/10.1016/j.asr.2010.05.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biondi, R., T. Neubert, S. Syndergaard, and J. K. Nielsen, 2011b: Radio occultation bending angle anomalies during tropical cyclones. Atmos. Meas. Tech., 4, 10531060, https://doi.org/10.5194/amt-4-1053-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biondi, R., W. J. Randel, S.-P. Ho, T. Neubert, and S. Syndergaard, 2012: Thermal structure of intense convective clouds derived from GPS radio occultations. Atmos. Chem. Phys., 12, 53095318, https://doi.org/10.5194/acp-12-5309-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biondi, R., S.-P. Ho, W. J. Randel, S. Syndergaard, and T. Neubert, 2013: Tropical cyclone cloud-top height and vertical temperature structure detection using GPS radio occultation measurements. J. Geophys. Res. Atmos., 118, 52475259, https://doi.org/10.1002/jgrd.50448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biondi, R., A. K. Steiner, G. Kirchengast, and T. Rieckh, 2015: Characterization of thermal structure and conditions for overshooting of tropical and extratropical cyclones with GPS radio occultation. Atmos. Chem. Phys., 15, 51815193, https://doi.org/10.5194/acp-15-5181-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biondi, R., A. K. Steiner, G. Kirchengast, H. Brenot, and T. Rieckh, 2017: Supporting the detection and monitoring of volcanic clouds: A promising new application of Global Navigation Satellite System radio occultation. Adv. Space Res., 60, 27072722, https://doi.org/10.1016/j.asr.2017.06.039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Birner, T., and E. J. Charlesworth, 2017: On the relative importance of radiative and dynamical heating for tropical tropopause temperatures. J. Geophys. Res. Atmos., 122, 67826797, https://doi.org/10.1002/2016JD026445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Birner, T., D. Sankey, and T. G. Shepherd, 2006: The tropopause inversion layer in models and analyses. Geophys. Res. Lett., 33, L14804, https://doi.org/10.1029/2006GL026549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bojinski, S., M. Verstraete, T. C. Peterson, C. Richter, A. Simmons, and M. Zemp, 2014: The concept of essential climate variables in support of climate research, applications, and policy. Bull. Amer. Meteor. Soc., 95, 14311443, https://doi.org/10.1175/BAMS-D-13-00047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonafoni, S., and R. Biondi, 2016: The usefulness of the Global Navigation Satellite Systems (GNSS) in the analysis of precipitation events. Atmos. Res., 167, 1523, https://doi.org/10.1016/j.atmosres.2015.07.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonafoni, S., R. Biondi, H. Brenot, and R. Anthes, 2019: Radio occultation and ground-based GNSS products for observing, understanding and predicting extreme events: A review. Atmos. Res., 230, 104624, https://doi.org/10.1016/j.atmosres.2019.104624.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borsche, M., G. Kirchengast, and U. Foelsche, 2007: Tropical tropopause climatology as observed with radio occultation measurements from CHAMP compared to ECMWF and NCEP analyses. Geophys. Res. Lett., 34, L03702, https://doi.org/10.1029/2006GL027918.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brewer, M. A., 1949: Evidence for a world circulation provided by measurements of helium and water vapor distribution in the stratosphere. Quart. J. Roy. Meteor. Soc., 75, 351363, https://doi.org/10.1002/qj.49707532603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calvo Fernández, N., R. R. García, R. G. Herrera, D. G. Puyol, L. G. Presa, E. H. Martín, and P. R. Rodríguez, 2004: Analysis of the ENSO signal in tropospheric and stratospheric temperatures observed by MSU, 1979–2000. J. Climate, 17, 39343946, https://doi.org/10.1175/1520-0442(2004)017<3934:AOTESI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chane Ming, F., C. Ibrahim, C. Barthe, S. Jolivet, P. Keckhut, Y.-A. Liou, and Y. Kuleshov, 2014: Observation and a numerical study of gravity waves during Tropical Cyclone Ivan (2008). Atmos. Chem. Phys., 14, 641658, https://doi.org/10.5194/acp-14-641-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cigala, V., R. Biondi, A. J. Prata, A. K. Steiner, G. Kirchengast, and H. Brenot, 2019: GNSS radio occultation advances the monitoring of volcanic clouds: The case of the 2008 Kasatochi eruption. Remote Sens., 11, 2199, https://doi.org/10.3390/rs11192199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danzer, J., B. Scherllin-Pirscher, and U. Foelsche, 2013: Systematic residual ionospheric errors in radio occultation data and a potential way to minimize them. Atmos. Meas. Tech., 6, 21692179, https://doi.org/10.5194/amt-6-2169-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danzer, J., U. Foelsche, B. Scherllin-Pirscher, and M. Schwärz, 2014a: Influence of changes in humidity on dry temperature in GPS RO climatologies. Atmos. Meas. Tech., 7, 28832896, https://doi.org/10.5194/amt-7-2883-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danzer, J., H. Gleisner, and S. B. Healy, 2014b: CHAMP climate data based on the inversion of monthly average bending angles. Atmos. Meas. Tech., 7, 40714079, https://doi.org/10.5194/amt-7-4071-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danzer, J., S. B. Healy, and I. D. Culverwell, 2015: A simulation study with a new residual ionospheric error model for GPS radio occultation climatologies. Atmos. Meas. Tech., 8, 33953404, https://doi.org/10.5194/amt-8-3395-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danzer, J., M. Schwärz, V. Proschek, U. Foelsche, and H. Gleisner, 2018: Comparison study of COSMIC RO dry-air climatologies based on average profile inversion. Atmos. Meas. Tech., 11, 48674882, https://doi.org/10.5194/amt-11-4867-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, N., and T. Birner, 2016: Climate model biases in the width of the tropical belt. J. Climate, 29, 19351954, https://doi.org/10.1175/JCLI-D-15-0336.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, N. A., and T. Birner, 2013: Seasonal to multidecadal variability of the width of the tropical belt. J. Geophys. Res. Atmos., 118, 77737787, https://doi.org/10.1002/jgrd.50610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de la Torre, A., T. Tsuda, G. A. Hajj, and J. Wickert, 2004: A global distribution of the stratospheric gravity wave activity from GPS occultation profiles with SAC-C and CHAMP. J. Meteor. Soc. Japan, 82, 407417, https://doi.org/10.2151/jmsj.2004.407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de la Torre, A., T. Schmidt, and J. Wickert, 2006: A global analysis of wave potential energy in the lower stratosphere derived from 5 years of GPS radio occultation data with CHAMP. Geophys. Res. Lett., 33, L24809, https://doi.org/10.1029/2006GL027696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de la Torre, A., P. Llamedo, P. Alexander, T. Schmidt, and J. Wickert, 2010: Estimated errors in a global gravity wave climatology from GPS radio occultation temperature profiles. Adv. Space Res., 46, 174179, https://doi.org/10.1016/j.asr.2010.02.033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de la Torre, A., P. Alexander, T. Schmidt, P. Llamedo, and R. Hierro, 2018: On the distortions in calculated GW parameters during slanted atmospheric soundings. Atmos. Meas. Tech., 11, 13631375, https://doi.org/10.5194/amt-11-1363-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dima, I. M., and J. M. Wallace, 2007: Structure of the annual-mean equatorial planetary waves in the ERA-40 reanalyses. J. Atmos. Sci., 64, 28622880, https://doi.org/10.1175/JAS3985.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ern, M., P. Preusse, M. J. Alexander, and C. D. Warner, 2004: Absolute values of gravity wave momentum flux derived from satellite data. J. Geophys. Res., 109, D20103, https://doi.org/10.1029/2004JD004752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ern, M., P. Preusse, M. Krebsbach, M. G. Mlynczak, and J. M. Russell III, 2008: Equatorial wave analysis from SABER and ECMWF temperatures. Atmos. Chem. Phys., 8, 845869, https://doi.org/10.5194/acp-8-845-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Faber, A., P. Llamedo, T. Schmidt, A. de la Torre, and J. Wickert, 2013: On the determination of gravity wave momentum flux from GPS radio occultation data. Atmos. Meas. Tech., 6, 31693180, https://doi.org/10.5194/amt-6-3169-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feltz, M. L., R. O. Knuteson, H. E. Revercomb, and D. C. Tobin, 2014: A methodology for the validation of temperature profiles from hyperspectral infrared sounders using GPS radio occultation: Experience with AIRS and COSMIC. J. Geophys. Res. Atmos., 119, 16801691, https://doi.org/10.1002/2013JD020853.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, D. D., and B. M. Herman, 1999: Remotely sensing the Earth’s atmosphere using the global positioning system (GPS)—The GPS/MET data analysis. J. Atmos. Oceanic Technol., 16, 9891002, https://doi.org/10.1175/1520-0426(1999)016<0989:RSTESA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flannaghan, T. J., and S. Fueglistaler, 2013: The importance of the tropical tropopause layer for equatorial Kelvin wave propagation. J. Geophys. Res. Atmos., 118, 51605175, https://doi.org/10.1002/jgrd.50418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foelsche, U., M. Borsche, A. K. Steiner, A. Gobiet, B. Pirscher, G. Kirchengast, J. Wickert, and T. Schmidt, 2008a: Observing upper troposphere-lower stratosphere climate with radio occultation data from the CHAMP satellite. Climate Dyn., 31, 4965, https://doi.org/10.1007/s00382-007-0337-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foelsche, U., G. Kirchengast, A. K. Steiner, L. Kornblueh, E. Manzini, and L. Bengtsson, 2008b: An observing system simulation experiment for climate monitoring with GNSS radio occultation data: Setup and test bed study. J. Geophys. Res., 113, D11108, https://doi.org/10.1029/2007JD009231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foelsche, U., B. Scherllin-Pirscher, F. Ladstädter, A. K. Steiner, and G. Kirchengast, 2011a: Refractivity and temperature climate records from multiple radio occultation satellites consistent within 0.05%. Atmos. Meas. Tech., 4, 20072018, https://doi.org/10.5194/amt-4-2007-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foelsche, U., S. Syndergaard, J. Fritzer, and G. Kirchengast, 2011b: Errors in GNSS radio occultation data: Relevance of the measurement geometry and obliquity of profiles. Atmos. Meas. Tech., 4, 189199, https://doi.org/10.5194/amt-4-189-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., A. E. Dessler, T. J. Dunkerton, I. Folkins, Q. Fu, and P. W. Mote, 2009: Tropical tropopause layer. Rev. Geophys., 47, RG1004, https://doi.org/10.1029/2008RG000267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., P. H. Haynes, and P. M. Forster, 2011: The annual cycle in lower stratospheric temperatures revisited. Atmos. Chem. Phys., 11, 37013711, https://doi.org/10.5194/acp-11-3701-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujiwara, M., and Coauthors, 2017: Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems. Atmos. Chem. Phys., 17, 14171452, https://doi.org/10.5194/acp-17-1417-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., and M. L. Salby, 1987: Transient response to localized episodic heating in the tropics. Part II: Far-field behavior. J. Atmos. Sci., 44, 499532, https://doi.org/10.1175/1520-0469(1987)044<0499:TRTLEH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GCOS, 2011: Systematic observation requirements for satellite-based products for climate (2011 update). Global Climate Observing System Doc. GCOS-154, 138 pp., https://library.wmo.int/doc_num.php?explnum_id=3710.

  • GCOS, 2016: The global observing system for climate: Implementation needs. Global Climate Observing System Doc. GCOS-200, 341 pp., https://library.wmo.int/doc_num.php?explnum_id=3417.

  • Geller, M. A., and Coauthors, 2013: A comparison between gravity wave momentum fluxes in observations and climate models. J. Climate, 26, 63836405, https://doi.org/10.1175/JCLI-D-12-00545.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and Coauthors, 2010: Multimodel assessment of the upper troposphere and lower stratosphere: Tropics and global trends. J. Geophys. Res., 115, D00M08, https://doi.org/10.1029/2009JD013638.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilpin, S., T. Rieckh, and R. Anthes, 2018: Reducing representativeness and sampling errors in radio occultation–radiosonde comparisons. Atmos. Meas. Tech., 11, 25672582, https://doi.org/10.5194/amt-11-2567-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gleisner, H., and S. B. Healy, 2013: A simplified approach for generating GNSS radio occultation refractivity climatologies. Atmos. Meas. Tech., 6, 121129, https://doi.org/10.5194/amt-6-121-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gleisner, H., P. Thejll, B. Christiansen, and J. K. Nielsen, 2015: Recent global warming hiatus dominated by low-latitude temperature trends in surface and troposphere data. Geophys. Res. Lett., 42, 510517, https://doi.org/10.1002/2014GL062596.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gobiet, A., G. Kirchengast, G. L. Manney, M. Borsche, C. Retscher, and G. Stiller, 2007: Retrieval of temperature profiles from CHAMP for climate monitoring: Intercomparison with Envisat MIPAS and GOMOS and different atmospheric analyses. Atmos. Chem. Phys., 7, 35193536, https://doi.org/10.5194/acp-7-3519-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goody, R., J. Anderson, and G. North, 1998: Testing climate models: An approach. Bull. Amer. Meteor. Soc., 79, 25412549, https://doi.org/10.1175/1520-0477(1998)079<2541:TCMAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goody, R., J. Anderson, T. Karl, R. B. Miller, G. North, J. Simpson, G. Stephens, and W. Washington, 2002: Why we should monitor the climate. Bull. Amer. Meteor. Soc., 83, 873878, https://doi.org/10.1175/1520-0477(2002)083<0873:WWSMTC>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., D. W. J. Thompson, and T. Birner, 2010: A global survey of static stability in the stratosphere and upper troposphere. J. Climate, 23, 22752292, https://doi.org/10.1175/2009JCLI3369.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haase, J. S., and Coauthors, 2018: Around the world in 84 days. Eos, Trans. Amer. Geophys. Union, 99, https://doi.org/10.1029/2018EO091907.

  • Hagan, M. E., and J. M. Forbes, 2002: Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release. J. Geophys. Res., 107, 4754, https://doi.org/10.1029/2001JD001236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagan, M. E., and J. M. Forbes, 2003: Migrating and nonmigrating semidiurnal tides in the upper atmosphere excited by tropospheric latent heat release. J. Geophys. Res., 108, 1062, https://doi.org/10.1029/2002JA009466.

    • Search Google Scholar
    • Export Citation
  • Hajj, G. A., E. R. Kursinski, L. J. Romans, W. I. Bertiger, and S. S. Leroy, 2002: A technical description of atmospheric sounding by GPS occultation. J. Atmos. Sol.-Terr. Phys., 64, 451469, https://doi.org/10.1016/S1364-6826(01)00114-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hajj, G. A., and Coauthors, 2004: CHAMP and SAC-C atmospheric occultation results and intercomparisons. J. Geophys. Res., 109, D06109, https://doi.org/10.1029/2003JD003909.

    • Search Google Scholar
    • Export Citation
  • He, W., S.-P. Ho, H. Chen, X. Zhou, D. Hunt, and Y.-H. Kuo, 2009: Assessment of radiosonde temperature measurements in the upper troposphere and lower stratosphere using COSMIC radio occultation data. Geophys. Res. Lett., 36, L17807, https://doi.org/10.1029/2009GL038712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Healy, S. B., and I. D. Culverwell, 2015: A modification to the standard ionospheric correction method used in GPS radio occultation. Atmos. Meas. Tech., 8, 33853393, https://doi.org/10.5194/amt-8-3385-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Healy, S. B., I. Polichtchouk, and A. Horanyi, 2020: Zonal wind information in the tropical stratosphere provided by GNSS radio occultation. Quart. J. Roy. Meteor. Soc., 146, 36123621, https://doi.org/10.1002/qj.3870.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegglin, M. I., and Coauthors, 2010: Multimodel assessment of the upper troposphere and lower stratosphere: Extratropics. J. Geophys. Res., 115, D00M09, https://doi.org/10.1029/2010JD013884.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and S. Abhik, 2018: Differences in vertical structure of the Madden-Julian oscillation associated with the quasi-biennial oscillation. Geophys. Res. Lett., 45, 44194428, https://doi.org/10.1029/2018GL077207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Ho, S.-P., Y.-H. Kuo, Z. Zeng, and T. Peterson, 2007: A comparison of lower stratospheric temperature from microwave measurements with CHAMP GPS RO data. Geophys. Res. Lett., 34, L15701, https://doi.org/10.1029/2007GL030202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ho, S.-P., and Coauthors, 2009: Estimating the uncertainty of using GPS radio occultation data for climate monitoring: Intercomparison of CHAMP refractivity climate records from 2002 to 2006 from different data centers. J. Geophys. Res., 114, D23107, https://doi.org/10.1029/2009JD011969.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ho, S.-P., and Coauthors, 2012: Reproducibility of GPS radio occultation data for climate monitoring: Profile-to-profile inter-comparison of CHAMP climate records 2002 to 2008 from six data centers. J. Geophys. Res., 117, D18111, https://doi.org/10.1029/2012JD017665.

    • Search Google Scholar
    • Export Citation
  • Ho, S.-P., and Coauthors, 2020: The COSMIC/FORMOSAT-3 radio occultation mission after 12 years: Accomplishments, remaining challenges, and potential impacts of COSMIC-2. Bull. Amer. Meteor. Soc., 101, E1107E1136, https://doi.org/10.1175/BAMS-D-18-0290.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hocke, K., 1997: Inversion of GPS meteorology data. Ann. Geophys., 15, 443450, https://doi.org/10.1007/s00585-997-0443-1.

  • Holton, J. R., M. J. Alexander, and M. T. Boehm, 2001: Evidence for short vertical wavelength Kelvin waves in the Department of Energy-Atmospheric Radiation Measurement Nauru99 radiosonde data. J. Geophys. Res., 106, 20 12520 129, https://doi.org/10.1029/2001JD900108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horinouchi, T., and T. Tsuda, 2009: Spatial structures and statistics of atmospheric gravity waves derived using a heuristic vertical cross-section extraction from COSMIC GPS radio occultation data. J. Geophys. Res., 114, D16110, https://doi.org/10.1029/2008JD011068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, E., and L. Pfister, 2004: Transport and freeze-drying in the tropical tropopause layer. J. Geophys. Res., 109, D02207, https://doi.org/10.1029/2003JD004022.

    • Search Google Scholar
    • Export Citation
  • Jin, S., G. P. Feng, and S. Gleason, 2011: Remote sensing using GNSS signals: Current status and future directions. Adv. Space Res., 47, 16451653, https://doi.org/10.1016/j.asr.2011.01.036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnston, B. R., F. Xie, and C. Liu, 2018: The effects of deep convection on regional temperature structure in the tropical upper troposphere and lower stratosphere. J. Geophys. Res. Atmos., 123, 15851603, https://doi.org/10.1002/2017JD027120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawatani, Y., S. K. Dhaka, M. Takahashi, and T. Tsuda, 2003: Large potential energy of gravity waves over a smooth surface with little convection: Simulation and observation. Geophys. Res. Lett., 30, 1438, https://doi.org/10.1029/2003GL016960.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawatani, Y., M. Takahashi, K. Sato, S. P. Alexander, and T. Tsuda, 2009: Global distribution of atmospheric waves in the equatorial upper troposphere and lower stratosphere: AGCM simulation of sources and propagation. J. Geophys. Res., 114, D01102, https://doi.org/10.1029/2008JD010374.

    • Search Google Scholar
    • Export Citation
  • Khaykin, S. M., J.-P. Pommereau, and A. Hauchecorne, 2013: Impact of land convection on temperature diurnal variation in the tropical lower stratosphere inferred from COSMIC GPS radio occultations. Atmos. Chem. Phys., 13, 63916402, https://doi.org/10.5194/acp-13-6391-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khaykin, S. M., and Coauthors, 2017: Postmillennium changes in stratospheric temperature consistently resolved by GPS radio occultation and AMSU observations. Geophys. Res. Lett., 44, 75107518, https://doi.org/10.1002/2017GL074353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., K. H. Straub, G. C. Reid, and K. S. Gage, 2001: Aspects of interannual and intraseasonal variability of the tropopause and lower stratosphere. Quart. J. Roy. Meteor. Soc., 127, 19611983, https://doi.org/10.1002/qj.49712757606.

    • Search Google Scholar
    • Export Citation
  • Kim, J., and S.-W. Son, 2012: Tropical cold-point tropopause: Climatology, seasonal cycle, and intraseasonal variability derived from COSMIC GPS radio occultation measurements. J. Climate, 25, 53435360, https://doi.org/10.1175/JCLI-D-11-00554.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J., K. M. Grise, and S.-W. Son, 2013: Thermal characteristics of the cold-point tropopause region in CMIP5 models. J. Geophys. Res. Atmos., 118, 88278841, https://doi.org/10.1002/jgrd.50649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J., W. J. Randel, T. Birner, and M. Abalos, 2016: Spectrum of wave forcing associated with the annual cycle of upwelling at the tropical tropopause. J. Atmos. Sci., 73, 855868, https://doi.org/10.1175/JAS-D-15-0096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J., W. J. Randel, and T. Birner, 2018: Convectively driven tropopause-level cooling and its influences on stratosphere moisture. J. Geophys. Res. Atmos., 123, 590606, https://doi.org/10.1002/2017JD027080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-E., and M. J. Alexander, 2015: Direct impacts of waves on tropical cold point tropopause temperature. Geophys. Res. Lett., 42, 15841592, https://doi.org/10.1002/2014GL062737.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-E., and Coauthors, 2016: Ubiquitous influence of waves on tropical high cirrus clouds. Geophys. Res. Lett., 43, 58955901, https://doi.org/10.1002/2016GL069293.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kishore, P., G. Basha, M. Venkat Ratnam, I. Velicogna, T. B. M. J. Ouarda, and D. Narayana Rao, 2016: Evaluating CMIP5 models using GPS radio occultation COSMIC temperature in UTLS region during 2006–2013: Twenty-first century projection and trends. Climate Dyn., 47, 32533270, https://doi.org/10.1007/s00382-016-3024-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, V., S. K. Dhaka, R. K. Choudhary, S.-P. Ho, S. Yoden, and K. K. Reddy, 2014: On the occurrence of the coldest region in the stratosphere and tropical tropopause stability: A study using COSMIC/FORMOSAT-3 satellite measurements. J. Atmos. Sol.-Terr. Phys., 121, 271286, https://doi.org/10.1016/j.jastp.2014.10.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., T.-K. Wee, S. Sokolovskiy, C. Rocken, W. Schreiner, D. Hunt, and R. A. Anthes, 2004: Inversion and error estimation of GPS radio occultation data. J. Meteor. Soc. Japan, 82, 507531, https://doi.org/10.2151/jmsj.2004.507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., W. S. Schreiner, J. Wang, D. L. Rossiter, and Y. Zhang, 2005: Comparison of GPS radio occultation soundings with radiosondes. Geophys. Res. Lett., 32, L05817, https://doi.org/10.1029/2004GL021443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kursinski, E. R., and T. Gebhardt, 2014: A method to deconvolve errors in GPS RO-derived water vapor histograms. J. Atmos. Oceanic Technol., 31, 26062628, https://doi.org/10.1175/JTECH-D-13-00233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kursinski, E. R., G. A. Hajj, J. T. Schofield, R. P. Linfield, and K. R. Hardy, 1997: Observing Earth’s atmosphere with radio occultation measurements using the global positioning system. J. Geophys. Res., 102, 23 42923 465, https://doi.org/10.1029/97JD01569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lackner, B. C., A. K. Steiner, and G. Kirchengast, 2011a: Where to see climate change best in radio occultation variables—Study using GCMs and ECMWF reanalyses. Ann. Geophys., 29, 21472167, https://doi.org/10.5194/angeo-29-2147-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lackner, B. C., A. K. Steiner, G. Kirchengast, and G. C. Hegerl, 2011b: Atmospheric climate change detection by radio occultation data using a fingerprinting method. J. Climate, 24, 52755291, https://doi.org/10.1175/2011JCLI3966.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ladstädter, F., A. K. Steiner, U. Foelsche, L. Haimberger, C. Tavolato, and G. Kirchengast, 2011: An assessment of differences in lower stratospheric temperature records from (A)MSU, radiosondes, and GPS radio occultation. Atmos. Meas. Tech., 4, 19651977, https://doi.org/10.5194/amt-4-1965-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ladstädter, F., A. K. Steiner, M. Schwärz, and G. Kirchengast, 2015: Climate intercomparison of GPS radio occultation, RS90/92 radiosondes and GRUAN from 2002 to 2013. Atmos. Meas. Tech., 8, 18191834, https://doi.org/10.5194/amt-8-1819-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lasota, E., A. K. Steiner, G. Kirchengast, and R. Biondi, 2020: Tropical cyclones vertical structure from GNSS radio occultation: An archive covering the period 2001–2018. Earth Syst. Sci. Data, 12, 26792693, https://doi.org/10.5194/essd-12-2679-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leroy, S. S., 1997: Measurements of geopotential heights by GPS radio occultation. J. Geophys. Res., 102, 69716986, https://doi.org/10.1029/96JD03083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leroy, S. S., and G. R. North, 2000: The application of COSMIC data to global change research. Terr. Atmos. Ocean. Sci., 11, 187210, https://doi.org/10.3319/TAO.2000.11.1.187(COSMIC).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leroy, S. S., J. G. Anderson, and J. A. Dykema, 2006a: Testing climate models using GPS radio occultation: A sensitivity analysis. J. Geophys. Res., 111, D17105, https://doi.org/10.1029/2005JD006145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leroy, S. S., J. A. Dykema, and J. G. Anderson, 2006b: Climate benchmarking using GNSS occultation. Atmosphere and Climate: Studies by Occultation Methods, U. Foelsche, G. Kirchengast, and A. K. Steiner, Eds., Springer, 287–302.

    • Crossref
    • Export Citation
  • Leroy, S. S., C. Ao, and O. P. Verkhoglyadova, 2012: Mapping GPS radio occultation data by Bayesian interpolation. J. Atmos. Oceanic Technol., 29, 10621074, https://doi.org/10.1175/JTECH-D-11-00179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leroy, S. S., C. Ao, and O. P. Verkhoglyadova, 2018: Temperature trends and anomalies in modern satellite data: Infrared sounding and GPS radio occultation. J. Geophys. Res. Atmos., 123, 11 43111 444, https://doi.org/10.1029/2018JD028990.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, H. W., 2009: A robust method for tropopause altitude identification using GPS radio occultation data. Geophys. Res. Lett., 36, L12808, https://doi.org/10.1029/2009GL039231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., G. Kirchengast, B. Scherllin-Pirscher, M. Schwärz, J. K. Nielsen, S.-P. Ho, and Y.-B. Yuan, 2019: A new algorithm for the retrieval of atmospheric profiles from GNSS radio occultation data in moist air and comparison to 1DVar retrievals. Remote Sens., 11, 2729, https://doi.org/10.3390/rs11232729.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1967: Planetary waves on beta-planes. Mon. Wea. Rev., 95, 441451, https://doi.org/10.1175/1520-0493(1967)095<0441:PWOBP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Löscher, A., K. B. Lauritsen, and M. Sørensen, 2009: The GRAS SAF radio occultation processing intercomparison project ROPIC. New Horizons in Occultation Research: Studies in Atmosphere and Climate, A. K. Steiner et al., Eds., Springer-Verlag, 49–62.

    • Crossref
    • Export Citation
  • Luna, D., P. Alexander, and A. de la Torre, 2013: Evaluation of uncertainty in gravity wave potential energy calculations through GPS radio occultation measurements. Adv. Space Res., 52, 879882, https://doi.org/10.1016/j.asr.2013.05.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luntama, J.-P., and Coauthors, 2008: Prospects of the EPS GRAS mission for operational atmospheric applications. Bull. Amer. Meteor. Soc., 89, 18631876, https://doi.org/10.1175/2008BAMS2399.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDonald, A. J., 2012: Gravity wave occurrence statistics derived from paired COSMIC/FORMOSAT3 observations. J. Geophys. Res., 117, D15106, https://doi.org/10.1029/2011JD016715.

    • Search Google Scholar
    • Export Citation
  • Mehta, S. K., M. V. Ratnam, and B. V. K. Murthy, 2011: Multiple tropopauses in the tropics: A cold point approach. J. Geophys. Res., 116, D20105, https://doi.org/10.1029/2011JD016637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mehta, S. K., M. V. Ratnam, and B. V. K. Murthy, 2013: Characteristics of the multiple tropopauses in the tropics. J. Atmos. Sol.-Terr. Phys., 95–96, 7886, https://doi.org/10.1016/j.jastp.2013.01.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mehta, S. K., M. Fujiwara, T. Tsuda, and J.-P. Vernier, 2015: Effect of recent minor volcanic eruptions on temperatures in the upper troposphere and lower stratosphere. J. Atmos. Sol.-Terr. Phys., 129, 99110, https://doi.org/10.1016/j.jastp.2015.04.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melbourne, W. G., and Coauthors, 1994: The application of spaceborne GPS to atmospheric limb sounding and global change monitoring. Jet Propulsion Laboratory Publ. 94-18, 147 pp., https://ntrs.nasa.gov/citations/19960008694.

  • Ming, A., A. C. Maycock, P. Hitchcock, and P. Haynes, 2017: The radiative role of ozone and water vapour in the annual temperature cycle in the tropical tropopause layer. Atmos. Chem. Phys., 17, 56775701, https://doi.org/10.5194/acp-17-5677-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mote, P. W., and Coauthors, 1996: An atmospheric tape recorder: The imprint of tropical tropopause temperatures on stratospheric water vapor. J. Geophys. Res., 101, 39894006, https://doi.org/10.1029/95JD03422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munchak, L. A., and L. L. Pan, 2014: Separation of the lapse rate and the cold point tropopauses in the tropics and the resulting impact on cloud top-tropopause relationships. J. Geophys. Res. Atmos., 119, 79637978, https://doi.org/10.1002/2013JD021189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Narayana Rao, D., M. V. Ratnam, B. V. K. Murthy, V. V. M. J. Rao, S. K. Mehta, D. Nath, and S. G. Basha, 2007: Identification of tropopause using bending angle profile from GPS radio occultation (RO): A radio tropopause. Geophys. Res. Lett., 34, L15809, https://doi.org/10.1029/2007GL029709.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nath, D., W. Chen, and A. Guharay, 2015: Climatology of stratospheric gravity waves and their interaction with zonal mean wind over the tropics using GPS RO and ground-based measurements in the two phases of QBO. Theor. Appl. Climatol., 119, 757769, https://doi.org/10.1007/s00704-014-1146-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newton, R., and W. J. Randel, 2020: Observations of upper-tropospheric temperature inversions in the Indian monsoon and their links to convectively forced quasi-stationary Kelvin waves. J. Atmos. Sci., 77, 28352846, https://doi.org/10.1175/JAS-D-20-0042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nishi, N., E. Nishimoto, H. Hayashi, M. Shiotani, H. Takashima, and T. Tsuda, 2010: Quasi-stationary temperature structure in the upper troposphere over the tropical Indian Ocean inferred from radio occultation data. J. Geophys. Res., 115, D14112, https://doi.org/10.1029/2009JD012857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nishida, M., A. Shimizu, T. Tsuda, C. Rocken, and R. H. Ware, 2000: Seasonal and longitudinal variations in the tropical tropopause observed with the GPS occultation technique (GPS/MET). J. Meteor. Soc. Japan, 78, 691700, https://doi.org/10.2151/jmsj1965.78.6_691.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noersomadi, N., and T. Tsuda, 2016: Global distribution of vertical wavenumber spectra in the lower stratosphere observed using high-vertical-resolution temperature profiles from COSMIC GPS radio occultation. Ann. Geophys., 34, 203213, https://doi.org/10.5194/angeo-34-203-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noersomadi, N., and T. Tsuda, 2017: Comparison of three retrievals of COSMIC GPS radio occultation results in the tropical upper troposphere and lower stratosphere. Earth Planets Space, 69, 125, https://doi.org/10.1186/s40623-017-0710-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noersomadi, N., T. Tsuda, and M. Fujiwara, 2019: Influence of ENSO and MJO on the zonal structure of tropical tropopause inversion layer using high-resolution temperature profiles retrieved from COSMIC GPS radio occultation. Atmos. Chem. Phys., 19, 69857000, https://doi.org/10.5194/acp-19-6985-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohring, G., Ed., 2007: Achieving satellite instrument calibration for climate change (ASCI3). NIST Doc., 144 pp., https://www.nist.gov/system/files/documents/2017/03/15/asic3.pdf.

  • Ohring, G., B. Wielicki, R. Spencer, B. Emery, and R. Datla, 2005: Satellite instrument calibration for measuring global climate change: Report of a workshop. Bull. Amer. Meteor. Soc., 86, 13031314, https://doi.org/10.1175/BAMS-86-9-1303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okazaki, I., and K. Heki, 2012: Atmospheric temperature changes by volcanic eruptions: GPS radio occultation observations in the 2010 Icelandic and 2011 Chilean cases. J. Volcanol. Geotherm. Res., 245–246, 123127, https://doi.org/10.1016/j.jvolgeores.2012.08.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paulik, L. C., and T. Birner, 2012: Quantifying the deep convective temperature signal within the tropical tropopause layer (TTL). Atmos. Chem. Phys., 12, 12 18312 195, https://doi.org/10.5194/acp-12-12183-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pilch Kedzierski, R., K. Matthes, and K. Bumke, 2016: The tropical tropopause inversion layer: Variability and modulation by equatorial waves. Atmos. Chem. Phys., 16, 11 61711 633, https://doi.org/10.5194/acp-16-11617-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pirscher, B., U. Foelsche, B. C. Lackner, and G. Kirchengast, 2007: Local time influence in single-satellite radio occultation climatologies from Sun-synchronous and non-Sun-synchronous satellites. J. Geophys. Res., 112, D11119, https://doi.org/10.1029/2006JD007934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pirscher, B., U. Foelsche, M. Borsche, G. Kirchengast, and Y.-H. Kuo, 2010: Analysis of migrating diurnal tides detected in FORMOSAT-3/COSMIC temperature data. J. Geophys. Res., 115, D14108, https://doi.org/10.1029/2009JD013008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pišoft, P., P. Šácha, J. Miksovsky, P. Huszar, B. Scherllin-Pirscher, and U. Foelsche, 2018: Revisiting internal gravity waves analysis using GPS RO density profiles: Comparison with temperature profiles and application for wave field stability study. Atmos. Meas. Tech., 11, 515527, https://doi.org/10.5194/amt-11-515-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prata, A. T., and Coauthors, 2020: Anak Krakatau triggers volcanic freezer in the upper troposphere. Sci. Rep., 10, 3584, https://doi.org/10.1038/s41598-020-60465-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and F. Wu, 2005: Kelvin wave variability near the equatorial tropopause observed in GPS radio occultation measurements. J. Geophys. Res., 110, D03102, https://doi.org/10.1029/2004JD005006.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and E. J. Jensen, 2013: Physical processes in the tropical tropopause layer and their roles in a changing climate. Nat. Geosci., 6, 169176, https://doi.org/10.1038/ngeo1733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and F. Wu, 2015: Variability of zonal mean tropical temperatures derived from a decade of GPS radio occultation data. J. Atmos. Sci., 72, 12611275, https://doi.org/10.1175/JAS-D-14-0216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and M. Park, 2019: Diagnosing observed stratospheric water vapor relationships to the cold point tropical tropopause. J. Geophys. Res. Atmos., 124, 70187033, https://doi.org/10.1029/2019JD030648.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., F. Wu, and W. R. Ríos, 2003: Thermal variability of the tropical tropopause region derived from GPS/MET observations. J. Geophys. Res., 108, 4024, https://doi.org/10.1029/2002JD002595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., F. Wu, S. J. Oltmans, K. Rosenlof, and G. E. Nedoluha, 2004: Interannual changes of stratospheric water vapor and correlations with tropical tropopause temperatures. J. Atmos. Sci., 61, 21332148, https://doi.org/10.1175/1520-0469(2004)061<2133:ICOSWV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., D. J. Seidel, and L. L. Pan, 2007: Observational characteristics of double tropopauses. J. Geophys. Res., 112, D07309, https://doi.org/10.1029/2006JD007904.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., R. R. Garcia, N. Calvo, and D. Marsh, 2009: ENSO influence on zonal mean temperature and ozone in the tropical lower stratosphere. J. Geophys. Res., 36, L15822, https://doi.org/10.1029/2009GL039343.

    • Search Google Scholar
    • Export Citation
  • Rapp, M., A. Dörnbrack, and B. Kaifler, 2018: An intercomparison of stratospheric gravity wave potential energy densities from METOP GPS radio occultation measurements and ECMWF model data. Atmos. Meas. Tech., 11, 10311048, https://doi.org/10.5194/amt-11-1031-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ratnam, M. V., G. Tetzlaff, and C. Jacobi, 2004: Global and seasonal variations of stratospheric gravity wave activity deduced from the CHAMP/GPS satellite. J. Atmos. Sci., 61, 16101620, https://doi.org/10.1175/1520-0469(2004)061<1610:GASVOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ratnam, M. V., T. Tsuda, T. Kozu, and S. Mori, 2006: Long-term behavior of the Kelvin waves revealed by CHAMP/GPS RO measurements and their effects on the tropopause structure. Ann. Geophys., 24, 13551366, https://doi.org/10.5194/angeo-24-1355-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ratnam, M. V., S. R. Babu, S. S. Das, G. Basha, B. V. Krishnamurthy, and B. Venkateswararao, 2016: Effect of tropical cyclones on the stratosphere–troposphere exchange observed using satellite observations over the north Indian Ocean. Atmos. Chem. Phys., 16, 85818591, https://doi.org/10.5194/acp-16-8581-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ravindra Babu, S., M. V. Ratnam, G. Basha, B. V. Krishnamurthy, and B. Venkateswararao, 2015: Effect of tropical cyclones on the tropical tropopause parameters observed using COSMIC GPS RO data. Atmos. Chem. Phys., 15, 10 23910 249, https://doi.org/10.5194/acp-15-10239-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, J. H., F. Sassi, and R. R. Garcia, 2010: Toward a physically based gravity wave source parameterization in a general circulation model. J. Atmos. Sci., 67, 136156, https://doi.org/10.1175/2009JAS3112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rieckh, T., B. Scherllin-Pirscher, F. Ladstädter, and U. Foelsche, 2014: Characteristics of tropopause parameters as observed with GPS radio occultation. Atmos. Meas. Tech., 7, 39473958, https://doi.org/10.5194/amt-7-3947-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rieckh, T., R. Anthes, W. Randel, S.-P. Ho, and U. Foelsche, 2018: Evaluating tropospheric humidity from GPS radio occultation, radiosonde, and AIRS from high-resolution time series. Atmos. Meas. Tech., 11, 30913109, https://doi.org/10.5194/amt-11-3091-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ringer, M. A., and S. B. Healy, 2008: Monitoring twenty-first century climate using GPS radio occultation bending angles. Geophys. Res. Lett., 35, L05708, https://doi.org/10.1029/2007GL032462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rivoire, L., T. Birner, and J. A. Knaff, 2016: Evolution of the upper-level thermal structure in tropical cyclones. Geophys. Res. Lett., 43, 10 53010 537, https://doi.org/10.1002/2016GL070622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rocken, C., and Coauthors, 1997: Analysis and validation of GPS/MET data in the neutral atmosphere. J. Geophys. Res., 102, 29 84929 866, https://doi.org/10.1029/97JD02400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rocken, C., Y.-H. Kuo, W. S. Schreiner, D. Hunt, S. Sokolovskiy, and C. McCormick, 2000: COSMIC system description. Terr. Atmos. Ocean. Sci., 11, 2152, https://doi.org/10.3319/TAO.2000.11.1.21(COSMIC).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Šácha, P., U. Foelsche, and P. Pišhoft, 2014: Analysis of internal gravity waves with GPS RO density profiles. Atmos. Meas. Tech., 7, 41234132, https://doi.org/10.5194/amt-7-4123-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakazaki, T., K. Sato, Y. Kawatani, and S. Watanabe, 2015: Three-dimensional structures of tropical nonmigrating tides in a high-vertical-resolution general circulation model. J. Geophys. Res. Atmos., 120, 17591775, https://doi.org/10.1002/2014JD022464.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salby, M. L., and R. R. Garcia, 1987: Transient response to localized episodic heating in the tropics. Part I: Excitation and short-time near-field behavior. J. Atmos. Sci., 44, 458498, https://doi.org/10.1175/1520-0469(1987)044<0458:TRTLEH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, K., and T. J. Dunkerton, 1997: Estimates of momentum flux associated with equatorial Kelvin and gravity waves. J. Geophys. Res., 102, 26 24726 261, https://doi.org/10.1029/96JD02514.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scherllin-Pirscher, B., G. Kirchengast, A. K. Steiner, Y.-H. Kuo, and U. Foelsche, 2011a: Quantifying uncertainty in climatological fields from GPS radio occultation: An empirical-analytical error model. Atmos. Meas. Tech., 4, 20192034, https://doi.org/10.5194/amt-4-2019-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scherllin-Pirscher, B., A. K. Steiner, G. Kirchengast, Y.-H. Kuo, and U. Foelsche, 2011b: Empirical analysis and modeling of errors of atmospheric profiles from GPS radio occultation. Atmos. Meas. Tech., 4, 18751890, https://doi.org/10.5194/amt-4-1875-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scherllin-Pirscher, B., C. Deser, S.-P. Ho, C. Chou, W. Randel, and Y.-H. Kuo, 2012: The vertical and spatial structure of ENSO in the upper troposphere and lower stratosphere from GPS radio occultation measurements. Geophys. Res. Lett., 39, L20801, https://doi.org/10.1029/2012GL053071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scherllin-Pirscher, B., A. K. Steiner, and G. Kirchengast, 2014: Deriving dynamics from GPS radio occultation: Three-dimensional wind fields for monitoring the climate. Geophys. Res. Lett., 41, 73677374, https://doi.org/10.1002/2014GL061524.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scherllin-Pirscher, B., W. J. Randel, and J. Kim, 2017a: Tropical temperature variability and Kelvin-wave activity in the UTLS from GPS RO measurements. Atmos. Chem. Phys., 17, 793806, https://doi.org/10.5194/acp-17-793-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scherllin-Pirscher, B., A. K. Steiner, G. Kirchengast, M. Schwärz, and S. Leroy, 2017b: The power of vertical geolocation of atmospheric profiles from GNSS radio occultation. J. Geophys. Res. Atmos., 122, 15951616, https://doi.org/10.1002/2016JD025902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, T., J. Wickert, G. Beyerle, and C. Reigber, 2004: Tropical tropopause parameters derived from GPS radio occultation measurements with CHAMP. J. Geophys. Res., 109, D13105, https://doi.org/10.1029/2004JD004566.

    • Search Google Scholar
    • Export Citation
  • Schmidt, T., S. Heise, J. Wickert, G. Beyerle, and C. Reigber, 2005: GPS radio occultation with CHAMP and SAC-C: Global monitoring of thermal tropopause parameters. Atmos. Chem. Phys., 5, 14731488, https://doi.org/10.5194/acp-5-1473-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, T., G. Beyerle, S. Heise, J. Wickert, and M. Rothacher, 2006: A climatology of multiple tropopauses derived from GPS radio occultations with CHAMP and SAC-C. Geophys. Res. Lett., 33, L04808, https://doi.org/10.1029/2005GL024600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, T., A. de la Torre, and J. Wickert, 2008a: Global gravity wave activity in the tropopause region from CHAMP radio occultation data. Geophys. Res. Lett., 35, L16807, https://doi.org/10.1029/2008GL034986.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, T., J. Wickert, G. Beyerle, and S. Heise, 2008b: Global tropopause height trends estimated from GPS radio occultation data. Geophys. Res. Lett., 35, L11806, https://doi.org/10.1029/2008GL034012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, T., J.-P. Cammas, H. G. J. Smit, S. Heise, J. Wickert, and A. Haser, 2010a: Observational characteristics of the tropopause inversion layer derived from CHAMP/GRACE radio occultations and MOZAIC aircraft data. J. Geophys. Res., 115, D24304, https://doi.org/10.1029/2010JD014284.

    • Search Google Scholar
    • Export Citation
  • Schmidt, T., J. Wickert, and A. Haser, 2010b: Variability of the upper troposphere and lower stratosphere observed with GPS radio occultation bending angles and temperatures. Adv. Space Res., 46, 150161, https://doi.org/10.1016/j.asr.2010.01.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, T., P. Alexander, and A. de la Torre, 2016a: Stratospheric gravity wave momentum flux from radio occultation. J. Geophys. Res. Atmos., 121, 44434467, https://doi.org/10.1002/2015JD024135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, T., L. Schoon, H. Dobslaw, K. Matthes, M. Thomas, and J. Wickert, 2016b: UTLS temperature validation of MPI-ESM decadal hindcast experiments with GPS radio occultations. Met. Z., 25, 673683, https://doi.org/10.1127/metz/2015/0601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schreiner, W., C. Rocken, S. Sokolovskiy, S. Syndergaard, and D. Hunt, 2007: Estimates of the precision of GPS radio occultations from the COSMIC/FORMOSAT-3 mission. Geophys. Res. Lett., 34, L04808, https://doi.org/10.1029/2006GL027557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schreiner, W., S. Sokolovskiy, D. Hunt, C. Rocken, and Y.-H. Kuo, 2011: Analysis of GPS radio occultation data from the FORMOSAT-3/COSMIC and MetOp/GRAS missions at CDAAC. Atmos. Meas. Tech., 4, 22552272, https://doi.org/10.5194/amt-4-2255-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schreiner, W., and Coauthors, 2020: COSMIC-2 radio occultation constellation: First results. Geophys. Res. Lett., 47, e2019GL086841, https://doi.org/10.1029/2019GL086841.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schrøder, T., S. Leroy, M. Stendel, and E. Kaas, 2003: Validating the microwave sounding unit stratospheric record using GPS occultation. Geophys. Res. Lett., 30, 1734, https://doi.org/10.1029/2003GL017588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwarz, J. C., G. Kirchengast, and M. Schwaerz, 2017: Integrating uncertainty propagation in GNSS radio occultation retrieval: From bending angle to dry-air atmospheric profiles. Earth Space Sci., 4, 200228, https://doi.org/10.1002/2016EA000234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shangguan, M., W. Wang, and S. Jin, 2019: Variability of temperature and ozone in the upper troposphere and lower stratosphere from multi-satellite observations and reanalysis data. Atmos. Chem. Phys., 19, 66596679, https://doi.org/10.5194/acp-19-6659-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, C., W. Cai, and D. Guo, 2017: Composition and thermal structure of the upper troposphere and lower stratosphere in a penetrating mesoscale convective complex determined by satellite observations and model simulations. Adv. Meteor., 2017, 6404796, https://doi.org/10.1155/2017/6404796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shimizu, A., and T. Tsuda, 1997: Characteristics of Kelvin waves and gravity waves observed with radiosondes over Indonesia. J. Geophys. Res., 102, 26 15926 171, https://doi.org/10.1029/96JD03146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sjoberg, J. P., R. A. Anthes, and T. Rieckh, 2021: The three-cornered hat method for estimating error variances of three or more atmospheric data sets. Part I: Overview and evaluation. J. Atmos. Oceanic Technol., https://doi.org/10.1175/JTECH-D-19-0217.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, S., J. S. Daniel, R. R. Neely III, J.-P. Vernier, E. G. Dutton, and L. W. Thomason, 2011: The persistently variable ”background” stratospheric aerosol layer and global climate change. Science, 333, 866870, https://doi.org/10.1126/science.1206027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Son, S.-W., N. F. Tandon, and L. M. Polvani, 2011: The fine-scale structure of the global tropopause derived from COSMIC GPS radio occultation measurements. J. Geophys. Res., 116, D20113, https://doi.org/10.1029/2011JD016030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Son, S.-W., Y. Lim, C. Yoo, H. H. Hendon, and J. Kim, 2017: Stratospheric control of the Madden–Julian oscillation. J. Climate, 30, 19091922, https://doi.org/10.1175/JCLI-D-16-0620.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Staten, P. W., and T. Reichler, 2008: Use of radio occultation for long-term tropopause studies: Uncertainties, biases, and instabilities. J. Geophys. Res., 113, D00B05, https://doi.org/10.1029/2008JD009886.

    • Search Google Scholar
    • Export Citation
  • Steiner, A. K., and G. Kirchengast, 2000: Gravity wave spectra from GPS/MET occultation observations. J. Atmos. Oceanic Technol., 17, 495503, https://doi.org/10.1175/1520-0426(2000)017<0495:GWSFGM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, A. K., and G. Kirchengast, 2005: Error analysis of GNSS radio occultation data based on ensembles of profiles from end-to-end simulations. J. Geophys. Res., 110, D15307, https://doi.org/10.1029/2004JD005251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, A. K., G. Kirchengast, U. Foelsche, L. Kornblueh, E. Manzini, and L. Bengtsson, 2001: GNSS occultation sounding for climate monitoring. Phys. Chem. Earth, 26A, 113124, https://doi.org/10.1016/S1464-1895(01)00034-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, A. K., G. Kirchengast, M. Borsche, U. Foelsche, and T. Schoengassner, 2007: A multi-year comparison of lower stratospheric temperatures from CHAMP radio occultation data with MSU/AMSU records. J. Geophys. Res., 112, D22110, https://doi.org/10.1029/2006JD008283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, A. K., G. Kirchengast, B. C. Lackner, B. Pirscher, M. Borsche, and U. Foelsche, 2009: Atmospheric temperature change detection with GPS radio occultation 1995 to 2008. Geophys. Res. Lett., 36, L18702, https://doi.org/10.1029/2009GL039777.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, A. K., B. C. Lackner, F. Ladstädter, B. Scherllin-Pirscher, U. Foelsche, and G. Kirchengast, 2011: GPS radio occultation for climate monitoring and change detection. Radio Sci., 46, RS0D24, https://doi.org/10.1029/2010RS004614.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, A. K., and Coauthors, 2013: Quantification of structural uncertainty in climate data records from GPS radio occultation. Atmos. Chem. Phys., 13, 14691484, https://doi.org/10.5194/acp-13-1469-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, A. K., B. C. Lackner, and M. A. Ringer, 2018: Tropical convection regimes in climate models: Evaluation with satellite observations. Atmos. Chem. Phys., 18, 46574672, https://doi.org/10.5194/acp-18-4657-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, A. K., and Coauthors, 2020a: Consistency and structural uncertainty of multi-mission GPS radio occultation records. Atmos. Meas. Tech., 13, 25472575, https://doi.org/10.5194/amt-13-2547-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, A. K., and Coauthors, 2020b: Observed temperature changes in the troposphere and stratosphere from 1979 to 2018. J. Climate, 33, 81658194, https://doi.org/10.1175/JCLI-D-19-0998.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stendel, M., 2006: Monitoring climate variability and change by means of GNSS data. Atmosphere and Climate: Studies by Occultation Methods, U. Foelsche, G. Kirchengast, and A. K. Steiner, Eds., Springer, 275–285.

    • Crossref
    • Export Citation
  • Stocker, M., F. Ladstädter, H. Wilhelmsen, and A. K. Steiner, 2019: Quantifying stratospheric temperature signals and climate imprints from post-2000 volcanic eruptions. Geophys. Res. Lett., 46, 12 48612 494, https://doi.org/10.1029/2019GL084396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., A. Reale, D. J. Seidel, and D. C. Hunt, 2010: Comparing radiosonde and COSMIC atmospheric profile data to quantify differences among radiosonde types and the effects of imperfect collocation on comparison statistics. J. Geophys. Res., 115, D23104, https://doi.org/10.1029/2010JD014457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y., and Coauthors, 2018: The FengYun-3C radio occultation sounder GNOS: A review of the mission and its early results and science applications. Atmos. Meas. Tech., 11, 57975811, https://doi.org/10.5194/amt-11-5797-2018.

    • Crossref