• Abram, N. J., and Coauthors, 2021: Connections of climate change and variability to large and extreme forest fires in southeast Australia. Commun. Earth Environ., 2, 8, https://doi.org/10.1038/s43247-020-00065-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, L. V., and J. M. Arblaster, 2017: Historical and projected trends in temperature and precipitation extremes in Australia in observations and CMIP5. Wea. Climate Extremes, 15, 3456, https://doi.org/10.1016/j.wace.2017.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arblaster, J. M., and L. V. Alexander, 2012: The impact of the El Niño–Southern Oscillation on maximum temperature extremes. Geophys. Res. Lett., 39, L20702, https://doi.org/10.1029/2012GL053409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., Z. Guan, and T. Yamagata, 2003a: Influence of the Indian Ocean Dipole on the Australian winter rainfall. Geophys. Res. Lett., 30, https://doi.org/10.1029/2003GL017926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., Z. Guan, and T. Yamagata, 2003b: A look at the relationship between the ENSO and the Indian Ocean Dipole. J. Meteor. Soc. Japan, 81, 4156, https://doi.org/10.2151/jmsj.81.41.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bador, M., and Coauthors, 2020: Impact of higher spatial atmospheric resolution on precipitation extremes over land in global climate models. J. Geophys. Res. Atmos., 125, e2019JD032184, https://doi.org/10.1029/2019JD032184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, J., S. C. Sherwood, L. V. Alexander, and J. P. Evans, 2017: Future increases in extreme precipitation exceed observed scaling rates. Nat. Climate Change, 7, 128132, https://doi.org/10.1038/nclimate3201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, A. S., and Coauthors, 2021: Australian northwest cloudbands and their relationship to atmospheric rivers and precipitation. Mon. Wea. Rev., 149, 11251139, https://doi.org/10.1175/MWR-D-20-0308.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, J. N., P. C. McIntosh, M. J. Pook, and J. S. Risbey, 2009: An investigation of the links between ENSO flavors and rainfall processes in southeastern Australia. Mon. Wea. Rev., 137, 37863795, https://doi.org/10.1175/2009MWR3066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., A. Sullivan, and T. Cowan, 2009: Climate change contributes to more frequent consecutive positive Indian Ocean Dipole events. Geophys. Res. Lett., 36, L23704, https://doi.org/10.1029/2009GL040163.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., P. van Rensch, and T. Cowan, 2011a: Influence of global-scale variability on the subtropical ridge over southeast Australia. J. Climate, 24, 60356053, https://doi.org/10.1175/2011JCLI4149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., P. van Rensch, T. Cowan, and H. H. Hendon, 2011b: Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall. J. Climate, 24, 39103923, https://doi.org/10.1175/2011JCLI4129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., P. van Rensch, T. Cowan, and H. H. Hendon, 2012: An asymmetry in the IOD and ENSO teleconnection pathway and its impact on Australian climate. J. Climate, 25, 63186329, https://doi.org/10.1175/JCLI-D-11-00501.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2014: Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Climate Change, 4, 111116, https://doi.org/10.1038/nclimate2100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiew, F. H. S., T. C. Piechota, J. A. Dracup, and T. A. McMahon, 1998: El Niño/Southern Oscillation and Australian rainfall, streamflow and drought: Links and potential for forecasting. J. Hydrol., 204, 138149, https://doi.org/10.1016/S0022-1694(97)00121-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung, C. T. Y., and S. B. Power, 2017: The non-linear impact of El Niño, La Niña and the Southern Oscillation on seasonal and regional Australian precipitation. J. South. Hemisphere Earth Syst. Sci., 67, 2545, https://doi.org/10.22499/3.6701.003.

    • Search Google Scholar
    • Export Citation
  • Cowan, T., P. van Rensch, A. Purich, and W. Cai, 2013: The association of tropical and extratropical climate modes to atmospheric blocking across southeastern Australia. J. Climate, 26, 75557569, https://doi.org/10.1175/JCLI-D-12-00781.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and K. L. Brubaker, 1999: Contrasting evaporative moisture sources during the drought of 1988 and the flood of 1993. J. Geophys. Res., 104, 19 38319 397, https://doi.org/10.1029/1999JD900222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donat, M. G., A. L. Lowry, L. V. Alexander, P. A. O’Gorman, and N. Maher, 2016: More extreme precipitation in the world’s dry and wet regions. Nat. Climate Change, 6, 508513, https://doi.org/10.1038/nclimate2941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. P., and I. Boyer-Souchet, 2012: Local sea surface temperatures add to extreme precipitation in northeast Australia during La Niña. Res. Lett., 39, L10803, https://doi.org/10.1029/2012GL052014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frauen, C., D. Dommenget, N. Tyrrell, M. Rezny, and S. Wales, 2014: Analysis of the nonlinearity of El Niño–Southern Oscillation teleconnections. J. Climate, 27, 62256244, https://doi.org/10.1175/JCLI-D-13-00757.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freund, M. B., B. J. Henley, D. J. Karoly, H. V. McGregor, N. J. Abram, and D. Dommenget, 2019: Higher frequency of Central Pacific El Niño events in recent decades relative to past centuries. Nat. Geosci., 12, 450455, https://doi.org/10.1038/s41561-019-0353-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freund, M. B., A. G. Marshall, M. C. Wheeler, and J. N. Brown, 2021: Central Pacific El Niño as a precursor to summer drought-breaking rainfall over southeastern Australia. Geophys. Res. Lett., 48, e2020GL091131, https://doi.org/10.1029/2020GL091131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallant, A. J. E., A. S. Kiem, D. C. Verdon-Kidd, R. C. Stone, and D. J. Karoly, 2012: Understanding hydroclimate processes in the Murray-Darling Basin for natural resources management. Hydrol. Earth Syst. Sci., 16, 20492068, https://doi.org/10.5194/hess-16-2049-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., T. D. Kell, and P. D. Jones, 2006: Regional climate impacts of the Southern Annular Mode. Geophys. Res. Lett., 33, L23704, https://doi.org/10.1029/2006GL027721.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glantz, M. H., 2001: Currents of Change: Impacts of El Niño and La Niña on Climate and Society. 2nd ed. Cambridge University Press, 268 pp.

    • Search Google Scholar
    • Export Citation
  • Grose, M. R., and Coauthors, 2020: Insights from CMIP6 for Australia’s future climate. Earth’s Future, 8, e2019EF001469, https://doi.org/10.1029/2019EF001469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., A. Capotondi, M. Lengaigne, S. Thual, and A. T. Wittenberg, 2020: ENSO modelling: History, progress and challenges. El Niño Southern Oscillation in a Changing Climate, W. McPhaden, M. J. Santoso, and A. Cai, Eds., Amer. Geophys. Union, 199226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hauser, S., C. M. Grams, M. J. Reeder, S. McGregor, A. H. Fink, and J. F. Quinting, 2020: A weather system perspective on winter–spring rainfall variability in southeastern Australia during El Niño. Quart. J. Roy. Meteor. Soc., 146, 26142633, https://doi.org/10.1002/qj.3808.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., D. W. J. Thompson, and M. C. Wheeler, 2007: Australian rainfall and surface temperature variations associated with the Southern Hemisphere annular mode. J. Climate, 20, 24522467, https://doi.org/10.1175/JCLI4134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., E.-P. Lim, J. M. Arblaster, and D. L. T. Anderson, 2013: Causes and predictability of the record wet east Australian spring 2010. Climate Dyn., 42, 11551174, https://doi.org/10.1007/s00382-013-1700-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirsch, A. L., A. J. Pitman, S. I. Seneviratne, J. P. Evans, and V. Haverd, 2014: Summertime maximum and minimum temperature coupling asymmetry over Australia determined using WRF. Geophys. Res. Lett., 41, 15461552, https://doi.org/10.1002/2013GL059055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobeichi, S., G. Abramowitz, and J. P. Evans, 2020: Derived Optimal Linear Combination Evapotranspiration—DOLCE v2.0. Research Data Australia, accessed 14 May 2020, https://doi.org/10.25914/5eab8f533aeae.

    • Search Google Scholar
    • Export Citation
  • Holgate, C. M., 2021: Evaporative source regions for Australian precipitation from Lagrangian back-trajectory analysis v1.0. Research Data Australia, accessed 15 October 2020, https://doi.org/10.25914/616ea51ea5afd.

    • Search Google Scholar
    • Export Citation
  • Holgate, C. M., A. I. J. M. van Dijk, J. P. Evans, and A. J. Pitman, 2020a: Local and remote drivers of southeast Australian drought. Geophys. Res. Lett., 47, e2020GL090238, https://doi.org/10.1029/2020GL090238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holgate, C. M., J. P. Evans, A. I. J. M. van Dijk, J. Pitman, and G. Di Virgilio, 2020b: Australian precipitation recycling and evaporative source regions. J. Climate, 33, 87218735, https://doi.org/10.1175/JCLI-D-19-0926.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iizumi, T., J. J. Luo, A. J. Challinor, G. Sakurai, M. Yokozawa, H. Sakuma, M. E. Brown, and T. Yamagata, 2014: Impacts of El Niño Southern Oscillation on the global yields of major crops. Nat. Commun., 5, 3712, https://doi.org/10.1038/ncomms4712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, D. A., and B. C. Trewin, 2000: On the relationships between the El Niño–southern oscillation and Australian land surface temperature. Int. J. Climatol., 20, 697719, https://doi.org/10.1002/1097-0088(20000615)20:7<697::AID-JOC499>3.0.CO;2-A.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kajtar, J. B., A. Santoso, M. H. England, and W. Cai, 2016: Tropical climate variability: Interactions across the Pacific, Indian, and Atlantic Oceans. Climate Dyn., 487, 21732190, https://doi.org/10.1007/s00382-016-3199-z.

    • Search Google Scholar
    • Export Citation
  • Kirono, D. G. C., V. Round, C. Heady, F. H. S. Chiew, and S. Osbrough, 2020: Drought projections for Australia: Updated results and analysis of model simulations. Wea. Climate Extremes, 30, 100280, https://doi.org/10.1016/j.wace.2020.100280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, E. P., and H. H. Hendon, 2015: Understanding and predicting the strong Southern Annular Mode and its impact on the record wet east Australian spring 2010. Climate Dyn., 44, 28072824, https://doi.org/10.1007/s00382-014-2400-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, E. P., H. H. Hendon, D. Hudson, M. Zhao, L. Shi, O. Alves, and G. Young, 2016: Evaluation of the ACCESS-S1 hindcasts for prediction of Victorian seasonal rainfall. Bureau of Meteorology, accessed 6 June 2021, http://www.bom.gov.au/research/publications/researchreports/BRR-019.pdf.

    • Search Google Scholar
    • Export Citation
  • Lim, E. P., and Coauthors, 2021: Why Australia was not wet during spring 2020 despite La Niña. Sci. Rep., 11, 18423, https://doi.org/10.1038/s41598-021-97690-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maher, P., and S. C. Sherwood, 2016: Skill in simulating Australian precipitation at the tropical edge. J. Climate, 29, 14771496, https://doi.org/10.1175/JCLI-D-15-0548.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., 2003: Trends in the southern annular mode from observations and reanalyses. J. Climate, 16, 41344143, https://doi.org/10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McIntosh, P. C., and H. H. Hendon, 2018: Understanding Rossby wave trains forced by the Indian Ocean Dipole. Climate Dyn., 50, 27832798, https://doi.org/10.1007/s00382-017-3771-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McIntosh, P. C., M. J. Pook, J. S. Risbey, S. N. Lisson, and M. Rebbeck, 2007: Seasonal climate forecasts for agriculture: Towards better understanding and value. Field Crops Res., 104, 130138, https://doi.org/10.1016/j.fcr.2007.03.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McIntosh, P. C., J. S. Risbey, J. N. Brown, and M. J. Pook, 2012: Apparent and real sources of rainfall associated with a cutoff low. CAWCR Res. Lett., 8, 49, https://www.cawcr.gov.au/researchletters/CAWCR_Research_Letters_8.pdf.

    • Search Google Scholar
    • Export Citation
  • McKenna, S., A. Santoso, A. Sen Gupta, A. S. Taschetto, and W. Cai, 2020: Indian Ocean Dipole in CMIP5 and CMIP6: Characteristics, biases, and links to ENSO. Sci. Rep., 10, 11500, https://doi.org/10.1038/s41598-020-68268-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as an integrating concept in Earth science. Science, 314, 17401745, https://doi.org/10.1126/science.1132588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meneghini, B., I. Simmonds, and I. N. Smith, 2007: Association between Australian rainfall and the Southern Annular Mode. Int. J. Climatol., 27, 109121, https://doi.org/10.1002/joc.1370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyers, G., P. McIntosh, L. Pigot, and M. Pook, 2007: The years of El Niño, La Niña, and interactions with the tropical Indian Ocean. J. Climate, 20, 28722880, https://doi.org/10.1175/JCLI4152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nieto, R., R. Castillo, and A. Drumond, 2014: The modulation of oceanic moisture transport by the hemispheric annular modes. Front. Earth Sci., 2, https://doi.org/10.3389/feart.2014.00011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pepler, A. S., A. J. Dowdy, and P. Hope, 2021: The differing role of weather systems in southern Australian rainfall between 1979–1996 and 1997–2015. Climate Dyn., 56, 22892302, https://doi.org/10.1007/s00382-020-05588-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perkins, S. E., D. Argüeso, and C. J. White, 2015: Relationships between climate variability, soil moisture, and Australian heatwaves. J. Geophys. Res. Atmos., 120, 81448164, https://doi.org/10.1002/2015JD023592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pook, M., J. Risbey, and P. McIntosh, 2010: East coast lows, atmospheric blocking and rainfall: A Tasmanian perspective. IOP Conf. Ser. Earth Environ. Sci., 11, 012011, https://doi.org/10.1088/1755-1315/11/1/012011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pui, A., A. Sharma, A. Santoso, and S. Westra, 2012: Impact of the El Niño–Southern Oscillation, Indian Ocean dipole, and southern annular mode on daily to subdaily rainfall characteristics in East Australia. Mon. Wea. Rev., 140, 16651682, https://doi.org/10.1175/MWR-D-11-00238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rathore, S., N. L. Bindoff, C. C. Ummenhofer, H. E. Phillips, and M. Feng, 2020: Near-surface salinity reveals the oceanic sources of moisture for Australian precipitation through atmospheric moisture transport. J. Climate, 33, 67076730, https://doi.org/10.1175/JCLI-D-19-0579.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reid, K. J., I. Simmonds, C. L. Vincent, and A. D. King, 2019: The Australian northwest cloudband: Climatology, mechanisms, and association with precipitation. J. Climate, 32, 66656684, https://doi.org/10.1175/JCLI-D-19-0031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Risbey, J. S., M. J. Pook, P. C. McIntosh, M. C. Wheeler, and H. H. Hendon, 2009: On the remote drivers of rainfall variability in Australia. Mon. Wea. Rev., 137, 32333253, https://doi.org/10.1175/2009MWR2861.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., T. Ambrizzi, and S. E. T. Ferraz, 2005: Indian Ocean Dipole mode events and austral surface air temperature anomalies. Dyn. Atmos. Oceans, 39, 87101, https://doi.org/10.1016/j.dynatmoce.2004.10.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santoso, A., M. J. Mcphaden, and W. Cai, 2017: The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño. Rev. Geophys., 55, 10791129, https://doi.org/10.1002/2017RG000560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen Gupta, A., and M. H. England, 2006: Coupled ocean–atmosphere–ice response to variations in the southern annular mode. J. Climate, 19, 44574486, https://doi.org/10.1175/JCLI3843.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taschetto, A. S., A. Sen Gupta, N. C. Jourdain, A. Santoso, C. C. Ummenhofer, and M. H. England, 2014: Cold tongue and warm pool ENSO Events in CMIP5: Mean state and future projections. J. Climate, 27, 28612885, https://doi.org/10.1175/JCLI-D-13-00437.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895899, https://doi.org/10.1126/science.1069270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tozer, C. R., J. S. Risbey, T. J. O’Kane, D. P. Monselesan, and M. J. Pook, 2018: The relationship between wave trains in the Southern Hemisphere storm track and rainfall extremes over Tasmania. Mon. Wea. Rev., 146, 42014230, https://doi.org/10.1175/MWR-D-18-0135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ukkola, A. M., M. G. De Kauwe, M. L. Roderick, G. Abramowitz, and A. J. Pitman, 2020: Robust future changes in meteorological drought in CMIP6 projections despite uncertainty in precipitation. Geophys. Res. Lett., 47, e2020GL087820, https://doi.org/10.1029/2020GL087820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ummenhofer, C. C., M. H. England, P. C. McIntosh, G. A. Meyers, M. J. Pook, J. S. Risbey, A. Sen Gupta, and A. S. Taschetto, 2009: What causes southeast Australia’s worst droughts? Geophys. Res. Lett., 36, L04706, https://doi.org/10.1029/2008GL036801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ummenhofer, C. C., and Coauthors, 2010: Indian and Pacific Ocean influences on southeast Australian drought and soil moisture. J. Climate, 24, 13131336, https://doi.org/10.1175/2010JCLI3475.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ummenhofer, C. C., P. C. McIntosh, M. J. Pook, and J. S. Risbey, 2013: Impact of surface forcing on Southern Hemisphere atmospheric blocking in the Australia–New Zealand sector. J. Climate, 26, 84768494, https://doi.org/10.1175/JCLI-D-12-00860.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ummenhofer, C. C., A. Sen Gupta, M. H. England, A. S. Taschetto, P. R. Briggs, and M. R. Raupach, 2015: How did ocean warming affect Australian rainfall extremes during the 2010/2011 La Niña event? Geophys. Res. Lett., 42, 99429951, https://doi.org/10.1002/2015GL065948.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Rensch, P., A. J. E. Gallant, W. Cai, and N. Nicholls, 2015: Evidence of local sea surface temperatures overriding the southeast Australian rainfall response to the 1997–1998 El Niño. Geophys. Res. Lett., 42, 94499456, https://doi.org/10.1002/2015GL066319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Rensch, P., J. Arblaster, A. J. E. Gallant, W. Cai, N. Nicholls, and P. J. Durack, 2019: Mechanisms causing east Australian spring rainfall differences between three strong El Niño events. Climate Dyn., 53, 36413659, https://doi.org/10.1007/s00382-019-04732-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verdon, D. C., and S. W. Franks, 2005: Indian Ocean sea surface temperature variability and winter rainfall: Eastern Australia. Water Resour. Res., 41, W09413, https://doi.org/10.1029/2004WR003845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weller, E., and W. Cai, 2013: Realism of the Indian Ocean dipole in CMIP5 models: The implications for climate projections. J. Climate, 26, 66496659, https://doi.org/10.1175/JCLI-D-12-00807.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 878 858 279
Full Text Views 187 181 42
PDF Downloads 204 197 42

The Impact of Interacting Climate Modes on East Australian Precipitation Moisture Sources

View More View Less
  • 1 aFenner School of Environment and Society, Australian National University, Canberra, Australia
  • | 2 bARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, Australia
  • | 3 cClimate Change Research Centre, University of New South Wales, Sydney, Australia
  • | 4 dCentre for Southern Hemisphere Oceans Research, CSIRO Oceans and Atmosphere, Hobart, Australia
Restricted access

Abstract

Modes of climate variability can drive significant changes to regional climate affecting extremes such as droughts, floods, and bushfires. The need to forecast these extremes and expected future increases in their intensity and frequency motivates a need to better understand the physical processes that connect climate modes to regional precipitation. Focusing on east Australia, where precipitation is driven by multiple interacting climate modes, this study provides a new perspective into the links between large-scale modes of climate variability and precipitation. Using a Lagrangian back-trajectory approach, we examine how El Niño–Southern Oscillation (ENSO) modifies the supply of evaporative moisture for precipitation, and how this is modulated by the Indian Ocean dipole (IOD) and southern annular mode (SAM). We demonstrate that La Niña modifies large-scale moisture transport together with local thermodynamic changes to facilitate local precipitation generation, whereas below-average precipitation during El Niño stems predominantly from increased regional subsidence. These dynamic–thermodynamic processes were often more pronounced during co-occurring La Niña/negative IOD and El Niño/positive IOD periods. As the SAM is less strongly correlated with ENSO, the impact of co-occurring ENSO and SAM largely depended on the state of ENSO. La Niña–related processes were exacerbated when combined with +SAM and dampened when combined with −SAM, and vice versa during El Niño. This new perspective on how interacting climate modes physically influence regional precipitation can help elucidate how model biases affect the simulation of Australian climate, facilitating model improvement and understanding of regional impacts from long-term changes in these modes.

Significance Statement

How climate modes modulate the oceanic and terrestrial sources of moisture for rainfall in east Australia is investigated. East Australia is wetter during La Niña because more moisture is transported into the region and is more easily turned into rainfall when it arrives, whereas drier conditions during El Niño are because local conditions inhibit the conversion of moisture into rainfall. Distant atmospheric changes over the Indian and Southern Oceans can intensify these changes. Our results can be used to better understand and predict the regional impact of long-term changes in these modes of climate variability, which are potentially altered under climate change.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Chiara Holgate’s current affiliation: Research School of Earth Sciences, Australian National University, Canberra, Australia.

Corresponding author: Chiara Holgate, chiara.holgate@anu.edu.au

Abstract

Modes of climate variability can drive significant changes to regional climate affecting extremes such as droughts, floods, and bushfires. The need to forecast these extremes and expected future increases in their intensity and frequency motivates a need to better understand the physical processes that connect climate modes to regional precipitation. Focusing on east Australia, where precipitation is driven by multiple interacting climate modes, this study provides a new perspective into the links between large-scale modes of climate variability and precipitation. Using a Lagrangian back-trajectory approach, we examine how El Niño–Southern Oscillation (ENSO) modifies the supply of evaporative moisture for precipitation, and how this is modulated by the Indian Ocean dipole (IOD) and southern annular mode (SAM). We demonstrate that La Niña modifies large-scale moisture transport together with local thermodynamic changes to facilitate local precipitation generation, whereas below-average precipitation during El Niño stems predominantly from increased regional subsidence. These dynamic–thermodynamic processes were often more pronounced during co-occurring La Niña/negative IOD and El Niño/positive IOD periods. As the SAM is less strongly correlated with ENSO, the impact of co-occurring ENSO and SAM largely depended on the state of ENSO. La Niña–related processes were exacerbated when combined with +SAM and dampened when combined with −SAM, and vice versa during El Niño. This new perspective on how interacting climate modes physically influence regional precipitation can help elucidate how model biases affect the simulation of Australian climate, facilitating model improvement and understanding of regional impacts from long-term changes in these modes.

Significance Statement

How climate modes modulate the oceanic and terrestrial sources of moisture for rainfall in east Australia is investigated. East Australia is wetter during La Niña because more moisture is transported into the region and is more easily turned into rainfall when it arrives, whereas drier conditions during El Niño are because local conditions inhibit the conversion of moisture into rainfall. Distant atmospheric changes over the Indian and Southern Oceans can intensify these changes. Our results can be used to better understand and predict the regional impact of long-term changes in these modes of climate variability, which are potentially altered under climate change.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Chiara Holgate’s current affiliation: Research School of Earth Sciences, Australian National University, Canberra, Australia.

Corresponding author: Chiara Holgate, chiara.holgate@anu.edu.au

Supplementary Materials

    • Supplemental Materials (PDF 961 KB)
Save