• Aiyyer, A. R., and C. Thorncroft, 2006: Climatology of vertical wind shear over the tropical Atlantic. J. Climate, 19, 29692983, https://doi.org/10.1175/JCLI3685.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amaya, D. J., 2019: The Pacific Meridional Mode and ENSO: A review. Curr. Climate Change Rep., 5, 296307, https://doi.org/10.1007/s40641-019-00142-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barcikowska, M., F. Feser, W. Zhang, and W. Mei, 2017: Changes in intense tropical cyclone activity for the western North Pacific during the last decades derived from a regional climate model simulation. Climate Dyn., 49, 29312949, https://doi.org/10.1007/s00382-016-3420-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruyère, C. L., G. J. Holland, and E. Towler, 2012: Investigating the use of a genesis potential index for tropical cyclones in the North Atlantic basin. J. Climate, 25, 86118626, https://doi.org/10.1175/JCLI-D-11-00619.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., K. A. Emanuel, and A. H. Sobel, 2007: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 48194834, https://doi.org/10.1175/JCLI4282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. W. Robertson, A. G. Barnston, and M. Ghil, 2008: Clustering of eastern North Pacific tropical cyclone tracks: ENSO and MJO effects. Geochem. Geophys. Geosyst., 9, Q06V05, https://doi.org/10.1029/2007GC001861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. H. Sobel, A. G. Barnston, and P. J. Klotzbach, 2010: The influence of natural climate variability, and seasonal forecasts of tropical cyclone activity. Global Perspectives on Tropical Cyclones, from Science to Mitigation, 2nd ed., J. C. L. Chan and J. D. Kepert, Eds., World Scientific, 325362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camp, J., M. Roberts, C. MacLachlan, E. Wallace, L. Hermanson, A. Brookshaw, A. Arribas, and A. A. Scaife, 2015: Seasonal forecasting of tropical storms using the Met Office GloSea5 seasonal forecast system. Quart. J. Roy. Meteor. Soc., 141, 22062219, https://doi.org/10.1002/qj.2516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and P. D. Sardeshmukh, 2015: Optimal precursors of different types of ENSO events. Geophys. Res. Lett., 42, 99529960, https://doi.org/10.1002/2015GL066171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caron, L.-P., M. Boudreault, and S. J. Camargo, 2015: On the variability and predictability of eastern North Pacific tropical cyclone activity. J. Climate, 28, 96789696, https://doi.org/10.1175/JCLI-D-15-0377.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 1985: Tropical cyclone activity in the northwest Pacific in relation to the El Niño/Southern Oscillation phenomenon. Mon. Wea. Rev., 113, 599606, https://doi.org/10.1175/1520-0493(1985)113<0599:TCAITN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., and Y. Guo, 2007: Is the number of North Atlantic tropical cyclones significantly underestimated prior to the availability of satellite observations? Geophys. Res. Lett., 34, L14801, https://doi.org/10.1029/2007GL030169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., and C. Y. Tam, 2010: Different impacts of two kinds of Pacific Ocean warming on tropical cyclone frequency over the western North Pacific. Geophys. Res. Lett., 37, L01803, https://doi.org/10.1029/2009GL041708.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J.-H., and S.-J. Lin, 2011: The remarkable predictability of inter-annual variability of Atlantic hurricanes during the past decade. Geophys. Res. Lett., 38, L11804, https://doi.org/10.1029/2011GL047629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., and J. M. Wallace, 2016: Orthogonal PDO and ENSO indices. J. Climate, 29, 38833892, https://doi.org/10.1175/JCLI-D-15-0684.1.

  • Chiang, J. C. H., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 41434158, https://doi.org/10.1175/JCLI4953.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, Y., K. J. Ha, C. H. Ho, and C. E. Chung, 2015: Interdecadal change in typhoon genesis condition over the western North Pacific. Climate Dyn., 45, 32433255, https://doi.org/10.1007/s00382-015-2536-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, J.-H., C. R. Sampson, A. S. Levine, and E. Fukada, 2002: The Joint Typhoon Warning Center tropical cyclone best-tracks, 1945–2000. Naval Research Laboratory Rep. NRL/MR/7540-02-16, 22 pp.

    • Search Google Scholar
    • Export Citation
  • Clark, J. D., and P.-S. Chu, 2002: Interannual variation of tropical cyclone activity over the central North Pacific. J. Meteor. Soc. Japan, 80, 403418, https://doi.org/10.2151/jmsj.80.403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, J. M., 2010: Contrasting high North-East Pacific tropical cyclone activity with low North Atlantic activity. Southeast. Geogr., 50, 8398, https://doi.org/10.1353/sgo.0.0069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, J. M., P. J. Klotzbach, R. N. Maue, D. R. Roache, E. S. Blake, C. H. Paxton, and C. A. Mehta, 2016: The record-breaking 2015 hurricane season in the eastern North Pacific: An analysis of environmental conditions. Geophys. Res. Lett., 43, 92179224, https://doi.org/10.1002/2016GL070597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Done, J. M., C. L. Bruyère, M. Ge, and A. Jaye, 2014: Internal variability of North Atlantic tropical cyclones. J. Geophys. Res. Atmos., 119, 65066519, https://doi.org/10.1002/2014JD021542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, L., and T. Zhou, 2014: The formation of the recent cooling in the eastern tropical Pacific Ocean and the associated climate impacts: A competition of global warming, IPO, and AMO. J. Geophys. Res. Atmos., 119, 11 27211 287, https://doi.org/10.1002/2013JD021395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., L. Yang, and S.-P. Xie, 2011: Tropical Indian Ocean influence on northwest Pacific tropical cyclones in summer following strong El Niño. J. Climate, 24, 315322, https://doi.org/10.1175/2010JCLI3890.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunstone, N. J., D. M. Smith, and R. Eade, 2011: Multi-year predictability of the tropical Atlantic atmosphere driven by the high latitude North Atlantic Ocean. Geophys. Res. Lett., 38, L14701, https://doi.org/10.1029/2011GL047949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., and A. B. Kara, 1999: Hurricanes of the North Atlantic: Climate and Society. Oxford University Press, 504 pp.

  • Elsner, J. B., K. Liu, and B. Kocher, 2000: Spatial variations in major U.S. hurricane activity: Statistics and a physical mechanism. J. Climate, 13, 22932305, https://doi.org/10.1175/1520-0442(2000)013<2293:SVIMUS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2003: Tropical cyclones. Annu. Rev. Earth Planet. Sci., 31, 75104, https://doi.org/10.1146/annurev.earth.31.100901.141259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2010: Tropical cyclone activity downscaled from NOAA-CIRES reanalysis, 1908–1958. J. Adv. Model. Earth Syst., 2, 112, https://doi.org/10.3894/JAMES.2010.2.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2018: 100 years of progress in tropical cyclone research. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., 59, 15.115.68, https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0016.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and D. S. Nolan, 2004: Tropical cyclone activity and the global climate system. 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 10A.2, http://ams.confex.com/ams/pdfpapers/75463.pdf.

    • Search Google Scholar
    • Export Citation
  • Felton, C. S., B. Subrahmanyam, and V. S. N. Murty, 2013: ENSO modulated cyclogenesis over the Bay of Bengal. J. Climate, 26, 98069818, https://doi.org/10.1175/JCLI-D-13-00134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fink, A. H., J. M. Schrage, and S. Kotthaus, 2010: On the potential causes of the nonstationary correlations between West African precipitation and Atlantic hurricane activity. J. Climate, 23, 54375456, https://doi.org/10.1175/2010JCLI3356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, B., M. S. Peng, T. Li, and D. E. Stevens, 2012: Developing versus nondeveloping disturbances for tropical cyclone formation. Part II: Western North Pacific. Mon. Wea. Rev., 140, 10671080, https://doi.org/10.1175/2011MWR3618.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, S., Z. Chen, and W. Zhang, 2018: Impacts of tropical North Atlantic SST on western North Pacific landfalling tropical cyclones. J. Climate, 31, 853862, https://doi.org/10.1175/JCLI-D-17-0325.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., and L. J. Shapiro, 1996: Physical mechanisms for the association of El Niño and West African rainfall with Atlantic major hurricane activity. J. Climate, 9, 11691187, https://doi.org/10.1175/1520-0442(1996)009<1169:PMFTAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., C. W. Landsea, A. M. Mestas-Nuñez, and W. M. Gray, 2001: The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293, 474479, https://doi.org/10.1126/science.1060040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1984: Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb quasi-biennial oscillation influences. Mon. Wea. Rev., 112, 16491668, https://doi.org/10.1175/1520-0493(1984)112<1649:ASHFPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ha, Y., Z. Zhong, X. Yang, and Y. Sun, 2015: Contribution of East Indian Ocean SSTA to western North Pacific tropical cyclone activity under El Niño/La Niña conditions. Int. J. Climatol., 35, 506519, https://doi.org/10.1002/joc.3997.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., J.-S. Kug, J.-Y. Park, and F.-F. Jin, 2013: Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat. Geosci., 6, 112116, https://doi.org/10.1038/ngeo1686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huo, L., P. Guo, S. N. Hameed, and D. Jin, 2015: The role of tropical Atlantic SST anomalies in modulating western North Pacific tropical cyclone genesis. Geophys. Res. Lett., 42, 23782384, https://doi.org/10.1002/2015GL063184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Irwin, R. P., and R. E. Davis, 1999: The relationship between the Southern Oscillation index and tropical cyclone tracks in the eastern North Pacific. Geophys. Res. Lett., 26, 22512254, https://doi.org/10.1029/1999GL900533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jagger, T. H., J. B. Elsner, and X. Niu, 2001: A dynamic probability model of hurricane winds in coastal counties of the United States. J. Appl. Meteor., 40, 853863, https://doi.org/10.1175/1520-0450(2001)040<0853:ADPMOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, N., and C. Zhu, 2018: Asymmetric changes of ENSO diversity modulated by the cold tongue mode under recent global warming. Geophys. Res. Lett., 45, 12 50612 513, https://doi.org/10.1029/2018GL079494.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jien, J. Y., W. A. Gough, and K. Butler, 2015: The influence of El Niño–Southern Oscillation on tropical cyclone activity in the eastern North Pacific basin. J. Climate, 28, 24592474, https://doi.org/10.1175/JCLI-D-14-00248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ju, J. H., L. L. Chen, and C. Y. Li, 2004: The preliminary research of Pacific–Indian Ocean sea surface temperature anomaly mode and the definition of its index. J. Trop. Meteor., 20, 617624.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, https://doi.org/10.1175/2008JCLI2309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., P. J. Webster, and J. A. Curry, 2011: Modulation of North Pacific tropical cyclone activity by three phases of ENSO. J. Climate, 24, 18391849, https://doi.org/10.1175/2010JCLI3939.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., 2011: The influence of El Niño–Southern Oscillation and the Atlantic multidecadal oscillation on Caribbean tropical cyclone activity. J. Climate, 24, 721731, https://doi.org/10.1175/2010JCLI3705.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., and E. S. Blake, 2013: North-central Pacific tropical cyclones: Impacts of El Niño–Southern Oscillation and the Madden–Julian oscillation. J. Climate, 26, 77207733, https://doi.org/10.1175/JCLI-D-12-00809.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., J. J. Sirutis, S. T. Garner, G. A. Vecchi, and I. M. Held, 2008: Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions. Nat. Geosci., 1, 359364, https://doi.org/10.1038/ngeo202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and Coauthors, 2010: Tropical cyclones and climate change. Nat. Geosci., 3, 157163, https://doi.org/10.1038/ngeo779.

  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korty, R. L., S. J. Camargo, and J. Galewsky, 2012: Tropical cyclone genesis factors in simulations of the Last Glacial Maximum. J. Climate, 25, 43484365, https://doi.org/10.1175/JCLI-D-11-00517.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and D. J. Vimont, 2007: A more general framework for understanding Atlantic hurricane variability and trends. Bull. Amer. Meteor. Soc., 88, 17671782, https://doi.org/10.1175/BAMS-88-11-1767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., S. J. Camargo, and M. Sitkowski, 2010: Climate modulation of North Atlantic hurricane tracks. J. Climate, 23, 30573076, https://doi.org/10.1175/2010JCLI3497.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kucharski, F., A. Bracco, J. H. Yoo, and F. Molteni, 2008: Atlantic forced component of the Indian monsoon interannual variability. Geophys. Res. Lett., 35, L04706, https://doi.org/10.1029/2007GL033037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, https://doi.org/10.1175/MWR-D-12-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., R. A. Pielke, A. M. Mestas-Nuñez, and J. A. Knaff, 1999: Atlantic basin hurricanes: Indices of climatic changes. Climatic Change, 42, 89129, https://doi.org/10.1023/A:1005416332322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., G. A. Vecchi, L. Bengtsson, and T. R. Knutson, 2010: Impact of duration thresholds on Atlantic tropical cyclone counts. J. Climate, 23, 25082519, https://doi.org/10.1175/2009JCLI3034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, S. M., and B. P. Kirtman, 2014: The Pacific meridional mode as an ENSO precursor and predictor in the North American multimodel ensemble. J. Climate, 27, 70187032, https://doi.org/10.1175/JCLI-D-14-00055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., 1985: Modeling the seasonal dependence of the atmospheric response to observed El Niños in 1962–76. Mon. Wea. Rev., 113, 19701996, https://doi.org/10.1175/1520-0493(1985)113<1970:MTSDOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., 2012: Synoptic and Climatic Aspects of Tropical Cyclogenesis in Western North Pacific in Cyclones: Formation, Triggers, and Control. K. Oouchi and H. Fudevasu, Eds., Nova Science, 6194.

    • Search Google Scholar
    • Export Citation
  • Lim, Y.-K., S. D. Schubert, O. Reale, A. M. Molod, M. J. Suarez, and B. M. Auer, 2016: Large-scale controls on Atlantic tropical cyclone activity on seasonal time scales. J. Climate, 29, 67276749, https://doi.org/10.1175/JCLI-D-16-0098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., W. Zhang, M. Stuecker, and F.-F. Jin, 2019: Pacific meridional mode–western North Pacific tropical cyclone linkage explained by tropical Pacific quasi-decadal variability. Geophys. Res. Lett., 46, 13 34613 354, https://doi.org/10.1029/2019GL085340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., P. Huang, and G. Chen, 2019: Impacts of the combined modes of the tropical Indo-Pacific sea surface temperature anomalies on the tropical cyclone genesis over the western North Pacific. Int. J. Climatol., 39, 21082119, https://doi.org/10.1002/joc.5938.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mei, W., S.-P. Xie, and M. Zhao, 2014: Variability of tropical cyclone track density in the North Atlantic: Observations and high-resolution simulations. J. Climate, 27, 47974814, https://doi.org/10.1175/JCLI-D-13-00587.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mei, W., S.-P. Xie, M. Zhao, and Y. Wang, 2015: Forced and internal variability of tropical cyclone track density in the western North Pacific. J. Climate, 28, 143167, https://doi.org/10.1175/JCLI-D-14-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mei, W., Y. Kamae, S.-P. Xie, and K. Yoshida, 2019: Variability and predictability of North Atlantic hurricane frequency in a large ensemble of high-resolution atmospheric simulations. J. Climate, 32, 31533167, https://doi.org/10.1175/JCLI-D-18-0554.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menkes, C. E., M. Lengaigne, P. Marchesiello, N. C. Jourdain, E. M. Vincent, J. Lefevre, F. Chauvin, and J.-F. Royer, 2012: Comparison of tropical cyclogenesis indices on seasonal to interannual timescales. Climate Dyn., 38, 301321, https://doi.org/10.1007/s00382-011-1126-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Messié, M., and F. Chavez, 2011: Global modes of sea surface temperature variability in relation to regional climate indices. J. Climate, 24, 43144331, https://doi.org/10.1175/2011JCLI3941.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, H., and Coauthors, 2017a: Dominant role of subtropical Pacific warming in extreme eastern Pacific hurricane seasons: 2015 and the future. J. Climate, 30, 243264, https://doi.org/10.1175/JCLI-D-16-0424.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, H., G. A. Vecchi, and S. Underwood, 2017b: Increasing frequency of extremely severe cyclonic storms over the Arabian Sea. Nat. Climate Change, 7, 885889, https://doi.org/10.1038/s41558-017-0008-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and M. G. McGauley, 2012: Tropical cyclogenesis in wind shear: Climatological relationships and physical processes. Cyclones: Formation, Triggers, and Control. K. Oouchi and H. Fudeyasu, Eds., Nova Science, 136.

    • Search Google Scholar
    • Export Citation
  • North, G., T. Bell, R. Cahalan, and F. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., and D. A. Mansfield, 1984: Response of two atmospheric general circulation models to sea-surface temperature anomalies in the tropical East and West Pacific. Nature, 310, 483485, https://doi.org/10.1038/310483a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patricola, C. M., R. Saravanan, and P. Chang, 2014: The impact of the El Niño–Southern Oscillation and Atlantic meridional mode on seasonal Atlantic tropical cyclone activity. J. Climate, 27, 53115328, https://doi.org/10.1175/JCLI-D-13-00687.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patricola, C. M., R. Saravanan, and P. Chang, 2018: The response of Atlantic tropical cyclones to suppression of African easterly waves. Geophys. Res. Lett., 45, 471479, https://doi.org/10.1002/2017GL076081.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, M. S., B. Fu, T. Li, and D. E. Stevens, 2012: Developing versus nondeveloping disturbances for tropical cyclone formation. Part I: North Atlantic. Mon. Wea. Rev., 140, 10471066, https://doi.org/10.1175/2011MWR3617.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, F., J. Liang, G. Wu, W. Dong, and X. Yang, 2011: Reliability analysis of climate change of tropical cyclone activity over the western North Pacific. J. Climate, 24, 58875898, https://doi.org/10.1175/2011JCLI3996.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schreck, C. J., K. R. Knapp, and J. P. Kossin, 2014: The impact of best track discrepancies on global tropical cyclone climatologies using IBTrACS. Mon. Wea. Rev., 142, 38813899, https://doi.org/10.1175/MWR-D-14-00021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, O. P., T. M. A. Khan, and M. S. Rahman, 2000: Changes in the frequency of tropical cyclones over the North Indian Ocean. Meteor. Atmos. Phys., 75, 1120, https://doi.org/10.1007/s007030070011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, D. M., R. Eade, N. J. Dunstone, D. Fereday, J. M. Murphy, H. Pohlmann, and A. A. Scaife, 2010: Skillful multi-year predictions of Atlantic hurricane frequency. Nat. Geosci., 3, 846849, https://doi.org/10.1038/ngeo1004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, B. H., and J. D. Neelin, 2004: ENSO influence on Atlantic hurricanes via tropospheric warming. Geophys. Res. Lett., 31, L24204, https://doi.org/10.1029/2004GL021072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, B. H., and K. Emanuel, 2012: A ventilation index for tropical cyclones. Bull. Amer. Meteor. Soc., 93, 19011912, https://doi.org/10.1175/BAMS-D-11-00165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, L., L. Wu, Y. Wang, and J. Yang, 2012: Influence of tropical Indian Ocean warming and ENSO on tropical cyclone activity over the western North Pacific. J. Meteor. Soc. Japan, 90, 127144, https://doi.org/10.2151/jmsj.2012-107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., S.-P. Xie, A. Timmermann, S. McGregor, T. Ogata, H. Kubota, and Y. M. Okumura, 2012: Regional patterns of tropical Indo-Pacific climate change: Evidence of the Walker circulation weakening. J. Climate, 25, 16891710, https://doi.org/10.1175/JCLI-D-11-00263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tory, K. J., and W. M. Frank, 2010: Tropical cyclone formation. Global Perspectives on Tropical Cyclones, J. C. L. Chan and J. D. Kepert, Eds., World Scientific, 5591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and T. R. Knutson, 2008: On estimates of historical North Atlantic topical cyclone activity. J. Climate, 21, 35803600, https://doi.org/10.1175/2008JCLI2178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and T. R. Knutson, 2011: Estimating annual numbers of Atlantic hurricanes missing from the HURDAT database (1878–1965) using ship track density. J. Climate, 24, 17361746, https://doi.org/10.1175/2010JCLI3810.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., M. Zhao, H. Wang, G. Villarini, A. Rosati, A. Kumar, I. M. Held, and R. Gudgel, 2011: Statistical-dynamical predictions of seasonal North Atlantic hurricane activity. Mon. Wea. Rev., 139, 10701082, https://doi.org/10.1175/2010MWR3499.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., G. A. Vecchi, T. R. Knutson, and J. A. Smith, 2011: Is the recorded increase in short duration North Atlantic tropical storms spurious? J. Geophys. Res., 116, D10114, https://doi.org/10.1029/2010JD015493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., and J. P. Kossin, 2007: The Atlantic meridional mode and hurricane activity. Geophys. Res. Lett., 34, L07709, https://doi.org/10.1029/2007GL029683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 16431658, https://doi.org/10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., 2019: Three-ocean interactions and climate variability: A review and perspective. Climate Dyn., 53, 51195136, https://doi.org/10.1007/s00382-019-04930-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., and S.-K. Lee, 2009: Co-variability of tropical cyclones in the North Atlantic and the eastern North Pacific. Geophys. Res. Lett., 36, L24702, https://doi.org/10.1029/2009GL041469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watterson, I. G., J. L. Evans, and B. F. Ryan, 1995: Seasonal and interannual variability of tropical cyclogenesis: Diagnostics from large-scale fields. J. Climate, 8, 30523066, https://doi.org/10.1175/1520-0442(1995)008<3052:SAIVOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitney, L. D., and J. Hobgood, 1997: The relationship between sea surface temperature and maximum intensities of tropical cyclones in the eastern North Pacific. J. Climate, 10, 29212930, https://doi.org/10.1175/1520-0442(1997)010<2921:TRBSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, K. M., P. J. Klotzbach, J. M. Collins, and C. J. Schreck, 2019: The record-setting 2018 eastern North Pacific hurricane season. Geophys. Res. Lett., 46, 10 07210 081, https://doi.org/10.1029/2019GL083657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., R. Zhan, Y. Lu, and Y. Wang, 2012: Internal variability of the dynamically downscaled tropical cyclone activity over the western North Pacific by the IPRC regional atmospheric model. J. Climate, 25, 21042122, https://doi.org/10.1175/JCLI-D-11-00143.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., H. Zhang, J.-M. Chen, and T. Feng, 2018: Impact of two types of El Niño on tropical cyclones over the western North Pacific: Sensitivity to location and intensity of Pacific warming. J. Climate, 31, 17251742, https://doi.org/10.1175/JCLI-D-17-0298.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., X. Cao, and Y. Yang, 2020: Interdecadal change in the relationship of the western North Pacific tropical cyclogenesis frequency to tropical Indian and North Atlantic Ocean SST in early 1990s. J. Geophys. Res. Atmos., 125, e2019JD031493, https://doi.org/10.1029/2019JD031493.

    • Search Google Scholar
    • Export Citation
  • Xie, L., T. Yan, and L. J. Pietrafesa, 2005: The effect of Atlantic sea surface temperature dipole mode on hurricanes: Implications for the 2004 Atlantic hurricane season. Geophys. Res. Lett., 32, L03701, https://doi.org/10.1029/2004GL021702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and J. A. Carton, 2004: Tropical Atlantic variability: Patterns, mechanisms, and impacts. Earth’s Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 121142.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. Hu, J. Hafner, Y. Du, G. Huang, and H. Tokinaga, 2009: Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., Y. Kosaka, Y. Du, K. Hu, J. Chowdary, and G. Huang, 2016: Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411432, https://doi.org/10.1007/s00376-015-5192-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., J.-S. Kug, B. Dewitte, M.-H. Kwon, B. P. Kirtman, and F.-F. Jin, 2009: El Niño in a changing climate. Nature, 461, 511514, https://doi.org/10.1038/nature08316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J. H., T. Li, Z. Tan, and Z. Zhu, 2016: Effects of tropical North Atlantic SST on tropical cyclone genesis in the western North Pacific. Climate Dyn., 46, 865877, https://doi.org/10.1007/s00382-015-2618-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., Y. Zou, S. T. Kim, and T. Lee, 2012: The changing impact of El Niño on US winter temperatures. Geophys. Res. Lett., 39, L15702, https://doi.org/10.1029/2012GL052483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zehr, R., 1992: Tropical cyclogenesis in the western North Pacific. NOAA Tech. Rep. NESDIS 61, 181 pp.

  • Zhan, R., Y. Wang, and X. Lei, 2011: Contributions of ENSO and east Indian Ocean SSTA to the interannual variability of northwest Pacific tropical cyclone frequency. J. Climate, 24, 509521, https://doi.org/10.1175/2010JCLI3808.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhan, R., Y. Wang, and J. Zhao, 2019: Contributions of SST anomalies in the Indo-Pacific Ocean to the interannual variability of tropical cyclone genesis frequency over the western North Pacific. J. Climate, 32, 33573372, https://doi.org/10.1175/JCLI-D-18-0439.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., and Z. Wang, 2015: Interannual variability of tropical cyclone activity and regional Hadley circulation over the northeastern Pacific. Geophys. Res. Lett., 42, 24732481, https://doi.org/10.1002/2015GL063318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., and Z. Wang, 2019: North Atlantic Rossby wave breaking during the hurricane season: Association with tropical and extratropical variability. J. Climate, 32, 37773801, https://doi.org/10.1175/JCLI-D-18-0299.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., G. A. Vecchi, H. Murakami, G. Villarini, and L. Jia, 2016: The Pacific meridional mode and the occurrence of tropical cyclones in the western North Pacific. J. Climate, 29, 381398, https://doi.org/10.1175/JCLI-D-15-0282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., G. A. Vecchi, H. Murakami, G. Villarini, T. Delworth, X. Yang, and L. Jia, 2018: Dominant role of Atlantic multidecadal oscillation in the recent decadal changes in western North Pacific tropical cyclone activity. Geophys. Res. Lett., 45, 354362, https://doi.org/10.1002/2017GL076397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., and C. Wang, 2019: On the relationship between ENSO and tropical cyclones in the western North Pacific during the boreal summer. Climate Dyn., 52, 275288, https://doi.org/10.1007/s00382-018-4136-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., I. M. Held, S. J. Lin, and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 66536678, https://doi.org/10.1175/2009JCLI3049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 233 232 231
Full Text Views 63 63 63
PDF Downloads 88 88 88

Effects of Tropical Sea Surface Temperature Variability on Northern Hemisphere Tropical Cyclone Genesis

View More View Less
  • 1 aDepartment of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
  • | 2 bScripps Institution of Oceanography, University of California, San Diego, La Jolla, California
Restricted access

Abstract

This study quantifies the contributions of tropical sea surface temperature (SST) variations during the boreal warm season to the interannual-to-decadal variability in tropical cyclone genesis frequency (TCGF) over the Northern Hemisphere ocean basins. The first seven leading modes of tropical SST variability are found to affect basinwide TCGF in one or more basins, and are related to canonical El Niño–Southern Oscillation (ENSO), global warming (GW), the Pacific meridional mode (PMM), Atlantic multidecadal oscillation (AMO), Pacific decadal oscillation (PDO), and the Atlantic meridional mode (AMM). These modes account for approximately 58%, 50%, and 56% of the variance in basinwide TCGF during 1969–2018 over the North Atlantic (NA), northeast Pacific (NEP), and northwest Pacific (NWP) Oceans, respectively. The SST effect is weak on TCGF variability in the north Indian Ocean. The SST modes dominating TCGF variability differ among the basins: ENSO, the AMO, AMM, and GW are dominant for the NA; ENSO and the AMO for the NEP; and the PMM, interannual AMO, and GW for the NWP. A specific mode may have opposite effects on TCGF in different basins, particularly between the NA and NEP. Sliding-window multiple linear regression analyses show that the SST effects on basinwide TCGF are stable in time in the NA and NWP, but have strengthened since the 1990s in the NEP. The SST effects on local TC genesis and occurrence frequency are also explored, and the underlying physical mechanisms are examined by diagnosing a genesis potential index and its components.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the U.S. CLIVAR - Hurricanes and Climate Special Collection.

Corresponding author: Wei Mei, wmei@email.unc.edu

Abstract

This study quantifies the contributions of tropical sea surface temperature (SST) variations during the boreal warm season to the interannual-to-decadal variability in tropical cyclone genesis frequency (TCGF) over the Northern Hemisphere ocean basins. The first seven leading modes of tropical SST variability are found to affect basinwide TCGF in one or more basins, and are related to canonical El Niño–Southern Oscillation (ENSO), global warming (GW), the Pacific meridional mode (PMM), Atlantic multidecadal oscillation (AMO), Pacific decadal oscillation (PDO), and the Atlantic meridional mode (AMM). These modes account for approximately 58%, 50%, and 56% of the variance in basinwide TCGF during 1969–2018 over the North Atlantic (NA), northeast Pacific (NEP), and northwest Pacific (NWP) Oceans, respectively. The SST effect is weak on TCGF variability in the north Indian Ocean. The SST modes dominating TCGF variability differ among the basins: ENSO, the AMO, AMM, and GW are dominant for the NA; ENSO and the AMO for the NEP; and the PMM, interannual AMO, and GW for the NWP. A specific mode may have opposite effects on TCGF in different basins, particularly between the NA and NEP. Sliding-window multiple linear regression analyses show that the SST effects on basinwide TCGF are stable in time in the NA and NWP, but have strengthened since the 1990s in the NEP. The SST effects on local TC genesis and occurrence frequency are also explored, and the underlying physical mechanisms are examined by diagnosing a genesis potential index and its components.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the U.S. CLIVAR - Hurricanes and Climate Special Collection.

Corresponding author: Wei Mei, wmei@email.unc.edu

Supplementary Materials

    • Supplemental Materials (PDF 3.57 MB)
Save