• Betts, A. K., 1998: Climate-convection feedbacks: Some further issues. Climatic Change, 39, 3538, https://doi.org/10.1023/A:1005323805826.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1966: A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus, 18, 820829, https://doi.org/10.3402/tellusa.v18i4.9712.

    • Search Google Scholar
    • Export Citation
  • Brown, J., and Coauthors, 2021: South Pacific convergence zone dynamics, variability and impacts in a changing climate. Nat. Rev. Earth Environ., 1, 530543, https://doi.org/10.1038/s43017-020-0078-2.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., A. C. Clement, A. Kaplan, Y. Kushnir, D. Pozdnyakov, R. Seager, S. E. Zebiak, and R. Murtugudde, 1997: Twentieth century sea surface temperature trends. Science, 275, 957960, https://doi.org/10.1126/science.275.5302.957.

    • Search Google Scholar
    • Export Citation
  • Chen, D., M. A. Cane, A. Kaplan, S. E. Zebiak, and D. Huang, 2004: Predictability of El Niño over the last 148 years. Science, 428, 733736, https://doi.org/10.1038/nature02439.

    • Search Google Scholar
    • Export Citation
  • Chung, E., A. Timmermann, B. Soden, K. Ha, and V. John, 2019: Reconciling opposing Walker circulation trends in observations and model projections. Nat. Climate Change, 9, 405412, https://doi.org/10.1038/s41558-019-0446-4.

    • Search Google Scholar
    • Export Citation
  • Clement, A. C., R. Seager, M. A. Cane, and S. E. Zebiak, 1996: An ocean dynamical thermostat. J. Climate, 9, 21902196, https://doi.org/10.1175/1520-0442(1996)009<2190:AODT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Coats, S., and K. Karnauskas, 2017: Are simulated and observed twentieth century tropical Pacific sea surface temperature trends significant relative to internal variability? Geophys. Res. Lett., 44, 99289937, https://doi.org/10.1002/2017GL074622.

    • Search Google Scholar
    • Export Citation
  • Delworth, T., F. Zeng, A. Rosati, G. A. Vecchi, and A. T. Wittenberg, 2015: A link between the hiatus in global warming and North American drought. J. Climate, 28, 38343845, https://doi.org/10.1175/JCLI-D-14-00616.1.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, and M. Alexander, 2010: Twentieth century tropical sea surface temperature trends revisited. Geophys. Res. Lett., 37, L10701, https://doi.org/10.1029/2010GL043321.

  • Deser, C., R. Guo, and F. Lehner, 2017: The relative contributions of tropical Pacific sea surface temperatures and atmospheric internal variability to the recent global warming hiatus. Geophys. Res. Lett., 44, 79457954, https://doi.org/10.1002/2017GL074273.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and Coauthors, 2020: Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Climate Change, 10, 277286, https://doi.org/10.1038/s41558-020-0731-2.

    • Search Google Scholar
    • Export Citation
  • DiNezio, P., A. C. Clement, G. A. Vecchi, B. J. Soden, B. P. Kirtman, and S. Lee, 2009: Climate response of the equatorial Pacific to global warming. J. Climate, 22, 48734892, https://doi.org/10.1175/2009JCLI2982.1.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. Meehl, C. Senior, B. Stevens, R. Stouffer, and K. Taylor, 2016: Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Search Google Scholar
    • Export Citation
  • Feely, R. A., R. Wanninkhof, T. Takahashi, and P. Tans, 1999: Influence of El Niño on the equatorial Pacific contribution to atmospheric CO2 accumulation. Nature, 398, 597601, https://doi.org/10.1038/19273.

    • Search Google Scholar
    • Export Citation
  • Freeman, E., and Coauthors, 2017: ICOADS release 3.0: A major update to the historical marine climate record. Int. J. Climatol., 37, 22112232, https://doi.org/10.1002/joc.4775.

    • Search Google Scholar
    • Export Citation
  • He, C., B. Wu, L. Zou, and T. Zhou, 2017: Responses of the summertime subtropical anticyclones to global warming. J. Climate, 30, 64656479, https://doi.org/10.1175/JCLI-D-16-0529.1.

    • Search Google Scholar
    • Export Citation
  • Heede, U. K., and A. Federov, 2021: Eastern equatorial Pacific warming delayed by aerosols and thermostat response to CO2 increase. Nat. Climate Change, 11, 696–703, https://doi.org/10.1038/s41558-021-01101-x.

    • Search Google Scholar
    • Export Citation
  • Heede, U. K., A. Federov, and N. Burls, 2021: A stronger versus weaker Walker: Understanding model differences in fast and slow tropical Pacific responses to global warming. Climate Dyn., 57, 25052522, https://doi.org/10.1007/s00382-021-05818-5.

    • Search Google Scholar
    • Export Citation
  • Held, I., M. Ting, and H. Wang, 2002: Northern winter stationary waves: Theory and modeling. J. Climate, 15, 21252144, https://doi.org/10.1175/1520-0442(2002)015<2125:NWSWTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hirahara, S., M. Ishii, and Y. Fukuda, 2014: Centennial-scale sea surface temperature analysis and its uncertainty. J. Climate, 27, 5775, https://doi.org/10.1175/JCLI-D-12-00837.1.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., 1982: On the annual cycle of the tropical Pacific atmosphere and ocean. Mon. Wea. Rev., 110, 18631878, https://doi.org/10.1175/1520-0493(1982)110<1863:OTACOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2015: Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911930, https://doi.org/10.1175/JCLI-D-14-00006.1.

    • Search Google Scholar
    • Export Citation
  • Ishii, M., A. Shouji, S. Sugimoto, and T. Matsumoto, 2005: Objective analysis of sea surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe collection. Int. J. Climatol., 25, 865879, https://doi.org/10.1002/joc.1169.

    • Search Google Scholar
    • Export Citation
  • Israeli, M., N. Naik, and M. A. Cane, 2000: An unconditionally stable scheme for the shallow water equations. Mon. Wea. Rev., 128, 810823, https://doi.org/10.1175/1520-0493(2000)128<0810:AUSSFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jeffrey, S., L. Rotstayn, M. Collier, S. Dravitski, C. Hamalainen, C. Moeseneder, K. Wong, and J. Syktus, 2013: Australia’s CMIP5 submission using the CSIRO-Mk3.6 model. Aust. Meteor. Oceanogr. J., 63, 113, https://doi.org/10.22499/2.6301.001.

    • Search Google Scholar
    • Export Citation
  • Kaplan, A., M. A. Cane, Y. Kushnir, A. C. Clement, M. B. Blumenthal, and B. Rajagopalan, 1998: Analyses of global sea surface temperature: 1856–1991. J. Geophys. Res., 103, 18 56718 589, https://doi.org/10.1029/97JC01736.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) Large Ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Search Google Scholar
    • Export Citation
  • Kennedy, L. J., N. A. Rayner, R. O. Smith, M. Saunby, and D. E. Parker, 2011a: Reassessing biases and other uncertainties in sea surface temperature observations since 1850: 1. Measurement and sampling errors. J. Geophys. Res., 116, D14103, https://doi.org/10.1029/2010JD015218.

  • Kennedy, L. J., N. A. Rayner, R. O. Smith, M. Saunby, and D. E. Parker, 2011b: Reassessing biases and other uncertainties in sea surface temperature observations since 1850: 2. Biases and homogenization. J. Geophys. Res., 116, D14104, https://doi.org/10.1029/2010JD015220.

  • Kirchmeier-Young, M., F. Zwiers, and N. Gillett, 2017: Attribution of extreme evens in Arctic sea ice extent. J. Climate, 30, 553571, https://doi.org/10.1175/JCLI-D-16-0412.1.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and S. Manabe, 1995: Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean–atmosphere model. J. Climate, 8, 21812199, https://doi.org/10.1175/1520-0442(1995)008<2181:TMROTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S. Xie, 2013: Recent global warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403407, https://doi.org/10.1038/nature12534.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S. Xie, 2016: The tropical Pacific as a key pacemaker of the variable rates of global warming. Nat. Geosci., 9, 669673, https://doi.org/10.1038/ngeo2770.

    • Search Google Scholar
    • Export Citation
  • Li, G., and S. Xie, 2014: Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial cold tongue and double ITCZ problems. J. Climate, 27, 17651780, https://doi.org/10.1175/JCLI-D-13-00337.1.

    • Search Google Scholar
    • Export Citation
  • Maher, N., and Coauthors, 2019: The Max Planck Institute Grand Ensemble: Enabling the exploration of climate system variability. J. Adv. Model. Earth Syst., 11, 20502069, https://doi.org/10.1029/2019MS001639.

    • Search Google Scholar
    • Export Citation
  • Mastrandrea, M., K. J. Mach, G. Plattner, O. Edenhofer, T. Stocker, C. Field, K. Ebi, and P. Matschoss, 2011: The IPCC guidance note on consistent treatment of uncertainties: A common approach across the working groups. Climatic Change, 108, 675, https://doi.org/10.1007/s10584-011-0178-6.

  • McKinley, G. A., M. Follows, and J. Marshall, 2004: Mechanisms of air-sea CO2 flux variability in the equatorial Pacific and the North Atlantic. Global Biogeochem. Cycles, 18, GB2011, https://doi.org/10.1029/2003GB002179.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, J. T. Fasullo, A. Hu, and K. Trenberth, 2011: Model-based evidence of deep-ocean heat uptake during surface temperature hiatus periods. Nat. Climate Change, 1, 360364, https://doi.org/10.1038/nclimate1229.

    • Search Google Scholar
    • Export Citation
  • Olonscheck, D., M. Rugenstein, and J. Marotzke, 2020: Broad consistency between observed and simulated trends on sea surface temperature patterns. Geophys. Res. Lett., 47, e2019GL086773, https://doi.org/10.1029/2019GL086773.

    • Search Google Scholar
    • Export Citation
  • Rayner, N., D. Parker, E. Horton, C. Folland, L. Alexander, D. Rowell, E. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rödenbeck, C., and Coauthors, 2015: Data-based estimates of the ocean carbon sink variability—First results of the Surface Ocean pCO2 Mapping intercomparison (SOCOM) Biogeosciences, 12, 72517278, https://doi.org/10.5194/bg-12-7251-2015.

    • Search Google Scholar
    • Export Citation
  • Rodgers, K., J. Lin, and T. Frohlicher, 2015: Emergence of multiple ocean ecosystem drivers in a large ensemble suite with an Earth system model. Biogeosciences, 12, 33013320, https://doi.org/10.5194/bg-12-3301-2015.

    • Search Google Scholar
    • Export Citation
  • Santoso, A., M. McPhaden, and W. Cai, 2007: The defining characteristics of ENSO extremes and the strong 2015/16 El Niño. Rev. Geophys., 55, 10791129, https://doi.org/10.1002/2017RG000560.

    • Search Google Scholar
    • Export Citation
  • Sarachik, E. S., and M. A. Cane, 2010: The El Niño-Southern Oscillation Phenomenon. Cambridge University Press, 384 pp.

  • Seager, R., M. A. Cane, N. Henderson, D. Lee, R. Abernathey, and H. Zhang, 2019: Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nat. Climate Change, 9, 517522, https://doi.org/10.1038/s41558-019-0505-x.

    • Search Google Scholar
    • Export Citation
  • Sun, L., M. Alexander, and C. Deser, 2018: Evolution of the global coupled climate response to Arctic sea ice loss during 1990–2090 and its contribution to climate change. J. Climate, 31, 78237843, https://doi.org/10.1175/JCLI-D-18-0134.1.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., and Coauthors, 2002: Global sea-air CO2 flux based on climatological surface ocean pCO2 and seasonal biological and temperature effects. Deep-Sea Res., 2002, 16011622, https://doi.org/10.1016/S0967-0645(02)00003-6.

    • Search Google Scholar
    • Export Citation
  • Valdivieso, M., and Coauthors, 2017: An assessment of air-sea heat fluxes from ocean and coupled reanalyses. Climate Dyn., 49, 9831008, https://doi.org/10.1007/s00382-015-2843-3.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340, https://doi.org/10.1175/JCLI4258.1.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., J. Dufresne, Y. Kosaka, T. Mauritsen, and H. Tatebe, 2020: Enhanced warming constrained by past trends in equatorial Pacific sea surface temperature gradient. Nat. Climate Change, 11, 3337, https://doi.org/10.1038/s41558-020-00933-3.

    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1981: An estimate of equatorial upwelling in the Pacific. J. Phys. Oceanogr., 11, 12051214, https://doi.org/10.1175/1520-0485(1981)011<1205:AEOEUI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, H., and F. Wang, 2009: Revisiting the thermocline depth in the equatorial Pacific. J. Climate, 22, 38563863, https://doi.org/10.1175/2009JCLI2836.1.

    • Search Google Scholar
    • Export Citation
  • Zeng, N., A. Mariotti, and P. Wetzel, 2005: Terrestrial mechanisms of interannual CO2 variability. Global Biogeochem. Cycles, 19, GB1016, https://doi.org/10.1029/2004GB002273.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like decade-to-century scale variability: 1900–93. J. Climate, 10, 10041020, https://doi.org/10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zuo, H., M. Balmaseda, S. Tietsche, K. Mogensen, and M. Mayer, 2019: The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: A description of the system and assessment. Ocean Sci., 15, 779–808, https://doi.org/10.5194/os-15-779-2019.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 764 764 133
Full Text Views 284 284 63
PDF Downloads 376 376 95

Persistent Discrepancies between Observed and Modeled Trends in the Tropical Pacific Ocean

View More View Less
  • 1 aLamont Doherty Earth Observatory, Columbia University, Palisades, New York
Restricted access

Abstract

The trends over recent decades in tropical Pacific sea surface and upper ocean temperature are examined in observations-based products, an ocean reanalysis and the latest models from the Coupled Model Intercomparison Project phase six and the Multimodel Large Ensembles Archive. Comparison is made using three metrics of sea surface temperature (SST) trend—the east–west and north–south SST gradients and a pattern correlation for the equatorial region—as well as change in thermocline depth. It is shown that the latest generation of models persist in not reproducing the observations-based SST trends as a response to radiative forcing and that the latter are at the far edge or beyond the range of modeled internal variability. The observed combination of thermocline shoaling and lack of warming in the equatorial cold tongue upwelling region is similarly at the extreme limit of modeled behavior. The persistence over the last century and a half of the observed trend toward an enhanced east–west SST gradient and, in four of five observed gridded datasets, to an enhanced equatorial north–south SST gradient, is also at the limit of model behavior. It is concluded that it is extremely unlikely that the observed trends are consistent with modeled internal variability. Instead, the results support the argument that the observed trends are a response to radiative forcing in which an enhanced east–west SST gradient and thermocline shoaling are key and that the latest generation of climate models continue to be unable to simulate this aspect of climate change.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Richard Seager, seager@ldeo.columbia.edu

Abstract

The trends over recent decades in tropical Pacific sea surface and upper ocean temperature are examined in observations-based products, an ocean reanalysis and the latest models from the Coupled Model Intercomparison Project phase six and the Multimodel Large Ensembles Archive. Comparison is made using three metrics of sea surface temperature (SST) trend—the east–west and north–south SST gradients and a pattern correlation for the equatorial region—as well as change in thermocline depth. It is shown that the latest generation of models persist in not reproducing the observations-based SST trends as a response to radiative forcing and that the latter are at the far edge or beyond the range of modeled internal variability. The observed combination of thermocline shoaling and lack of warming in the equatorial cold tongue upwelling region is similarly at the extreme limit of modeled behavior. The persistence over the last century and a half of the observed trend toward an enhanced east–west SST gradient and, in four of five observed gridded datasets, to an enhanced equatorial north–south SST gradient, is also at the limit of model behavior. It is concluded that it is extremely unlikely that the observed trends are consistent with modeled internal variability. Instead, the results support the argument that the observed trends are a response to radiative forcing in which an enhanced east–west SST gradient and thermocline shoaling are key and that the latest generation of climate models continue to be unable to simulate this aspect of climate change.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Richard Seager, seager@ldeo.columbia.edu

Supplementary Materials

    • Supplemental Materials (PDF 258 KB)
Save